Visual Analytics and Similarity Search: Concepts and Challenges for Effective Retrieval Considering Users, Tasks, and Data View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-09-28

AUTHORS

Daniel Seebacher , Johannes Häußler , Manuel Stein , Halldor Janetzko , Tobias Schreck , Daniel A. Keim

ABSTRACT

A major challenge of the contemporary information age is the overwhelming and increasing data amount, especially when looking for specific information. Searching for relevant information is no longer manually possible, but has to rely on automatic methods, specifically, similarity search. From a formal perspective, similarity search can be seen as the problem of finding entities, which are considered to be similar to a query with respect to certain describing features. The question which features or which weighted combination of features to use for a given query creates a need for semi-automatic methods to address the needs of diverse users. Furthermore, the quality of the results of a similarity search is more than effectiveness, measured by precision and recall. The user ideally needs to trust the results and understand how they were computed. We propose to apply Visual Analytics methodologies, for synergistic cooperation of user and algorithms, to integrate three key dimensions of similarity search: users, tasks, and data for effective search. However, there exists a gap in knowledge how user, task as well as the available data influence each other and the similarity search. In this concept paper, we envision how Visual Analytics can be used to tackle current challenges of similarity search. More... »

PAGES

324-332

Book

TITLE

Similarity Search and Applications

ISBN

978-3-319-68473-4
978-3-319-68474-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-68474-1_23

DOI

http://dx.doi.org/10.1007/978-3-319-68474-1_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091978624


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seebacher", 
        "givenName": "Daniel", 
        "id": "sg:person.014055264163.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014055264163.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00e4u\u00dfler", 
        "givenName": "Johannes", 
        "id": "sg:person.014124537627.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014124537627.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stein", 
        "givenName": "Manuel", 
        "id": "sg:person.016251627170.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016251627170.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Zurich, Z\u00fcrich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.7400.3", 
          "name": [
            "University of Zurich, Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Janetzko", 
        "givenName": "Halldor", 
        "id": "sg:person.015754073455.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015754073455.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Graz, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "TU Graz, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schreck", 
        "givenName": "Tobias", 
        "id": "sg:person.01165671765.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165671765.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keim", 
        "givenName": "Daniel A.", 
        "id": "sg:person.0635776571.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-09-28", 
    "datePublishedReg": "2017-09-28", 
    "description": "A major challenge of the contemporary information age is the overwhelming and increasing data amount, especially when looking for specific information. Searching for relevant information is no longer manually possible, but has to rely on automatic methods, specifically, similarity search. From a formal perspective, similarity search can be seen as the problem of finding entities, which are considered to be similar to a query with respect to certain describing features. The question which features or which weighted combination of features to use for a given query creates a need for semi-automatic methods to address the needs of diverse users. Furthermore, the quality of the results of a similarity search is more than effectiveness, measured by precision and recall. The user ideally needs to trust the results and understand how they were computed. We propose to apply Visual Analytics methodologies, for synergistic cooperation of user and algorithms, to integrate three key dimensions of similarity search: users, tasks, and data for effective search. However, there exists a gap in knowledge how user, task as well as the available data influence each other and the similarity search. In this concept paper, we envision how Visual Analytics can be used to tackle current challenges of similarity search.", 
    "editor": [
      {
        "familyName": "Beecks", 
        "givenName": "Christian", 
        "type": "Person"
      }, 
      {
        "familyName": "Borutta", 
        "givenName": "Felix", 
        "type": "Person"
      }, 
      {
        "familyName": "Kr\u00f6ger", 
        "givenName": "Peer", 
        "type": "Person"
      }, 
      {
        "familyName": "Seidl", 
        "givenName": "Thomas", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-68474-1_23", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-68473-4", 
        "978-3-319-68474-1"
      ], 
      "name": "Similarity Search and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "similarity search", 
      "visual analytics", 
      "visual analytics methodology", 
      "semi-automatic method", 
      "contemporary information age", 
      "data amount", 
      "diverse users", 
      "effective search", 
      "automatic method", 
      "users", 
      "combination of features", 
      "information age", 
      "queries", 
      "analytics", 
      "formal perspective", 
      "relevant information", 
      "analytic methodology", 
      "data influence", 
      "task", 
      "specific information", 
      "search", 
      "concept paper", 
      "major challenge", 
      "information", 
      "challenges", 
      "algorithm", 
      "features", 
      "current challenges", 
      "recall", 
      "need", 
      "data", 
      "method", 
      "effectiveness", 
      "entities", 
      "precision", 
      "methodology", 
      "synergistic cooperation", 
      "key dimensions", 
      "concept", 
      "cooperation", 
      "quality", 
      "knowledge", 
      "results", 
      "amount", 
      "perspective", 
      "dimensions", 
      "gap", 
      "respect", 
      "combination", 
      "questions", 
      "influence", 
      "age", 
      "paper", 
      "problem"
    ], 
    "name": "Visual Analytics and Similarity Search: Concepts and Challenges for Effective Retrieval Considering Users, Tasks, and Data", 
    "pagination": "324-332", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091978624"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-68474-1_23"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-68474-1_23", 
      "https://app.dimensions.ai/details/publication/pub.1091978624"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_49.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-68474-1_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68474-1_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68474-1_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68474-1_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68474-1_23'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      22 PREDICATES      78 URIs      71 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-68474-1_23 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nf09aeddc71444fe99eb2f98cc73189de
4 schema:datePublished 2017-09-28
5 schema:datePublishedReg 2017-09-28
6 schema:description A major challenge of the contemporary information age is the overwhelming and increasing data amount, especially when looking for specific information. Searching for relevant information is no longer manually possible, but has to rely on automatic methods, specifically, similarity search. From a formal perspective, similarity search can be seen as the problem of finding entities, which are considered to be similar to a query with respect to certain describing features. The question which features or which weighted combination of features to use for a given query creates a need for semi-automatic methods to address the needs of diverse users. Furthermore, the quality of the results of a similarity search is more than effectiveness, measured by precision and recall. The user ideally needs to trust the results and understand how they were computed. We propose to apply Visual Analytics methodologies, for synergistic cooperation of user and algorithms, to integrate three key dimensions of similarity search: users, tasks, and data for effective search. However, there exists a gap in knowledge how user, task as well as the available data influence each other and the similarity search. In this concept paper, we envision how Visual Analytics can be used to tackle current challenges of similarity search.
7 schema:editor N8cfe169030b54297a7ba58d2434dac35
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N707f7091b63d45e5a065153b9f72f6ce
11 schema:keywords age
12 algorithm
13 amount
14 analytic methodology
15 analytics
16 automatic method
17 challenges
18 combination
19 combination of features
20 concept
21 concept paper
22 contemporary information age
23 cooperation
24 current challenges
25 data
26 data amount
27 data influence
28 dimensions
29 diverse users
30 effective search
31 effectiveness
32 entities
33 features
34 formal perspective
35 gap
36 influence
37 information
38 information age
39 key dimensions
40 knowledge
41 major challenge
42 method
43 methodology
44 need
45 paper
46 perspective
47 precision
48 problem
49 quality
50 queries
51 questions
52 recall
53 relevant information
54 respect
55 results
56 search
57 semi-automatic method
58 similarity search
59 specific information
60 synergistic cooperation
61 task
62 users
63 visual analytics
64 visual analytics methodology
65 schema:name Visual Analytics and Similarity Search: Concepts and Challenges for Effective Retrieval Considering Users, Tasks, and Data
66 schema:pagination 324-332
67 schema:productId N2ca1f8c088494b3bbf6a8e3a009b397e
68 Nb0c358aca58a43e3ae846f4ccb231672
69 schema:publisher N6609b0ddf2314c95aa7006801de57ce7
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091978624
71 https://doi.org/10.1007/978-3-319-68474-1_23
72 schema:sdDatePublished 2022-12-01T06:54
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N340cc20a30d9460aa0f85b55009f12ea
75 schema:url https://doi.org/10.1007/978-3-319-68474-1_23
76 sgo:license sg:explorer/license/
77 sgo:sdDataset chapters
78 rdf:type schema:Chapter
79 N03a2aa4637be46848bf622d73eb6e6ee schema:familyName Borutta
80 schema:givenName Felix
81 rdf:type schema:Person
82 N094fef6dfcf94a04887bb0dd405f3c8e rdf:first sg:person.015754073455.65
83 rdf:rest Ndcdac11aeced4729aaeea43a662ab283
84 N0ac2dddb61254b7fbd3b3d2e59ee9428 schema:familyName Beecks
85 schema:givenName Christian
86 rdf:type schema:Person
87 N2ca1f8c088494b3bbf6a8e3a009b397e schema:name dimensions_id
88 schema:value pub.1091978624
89 rdf:type schema:PropertyValue
90 N340cc20a30d9460aa0f85b55009f12ea schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N4b60a2ece12e4151b48c0779c1979966 schema:familyName Kröger
93 schema:givenName Peer
94 rdf:type schema:Person
95 N526043d481194b12a46b5789adc6fb29 rdf:first sg:person.014124537627.11
96 rdf:rest Nb84b76c3eb2e432590cb68589153d116
97 N6609b0ddf2314c95aa7006801de57ce7 schema:name Springer Nature
98 rdf:type schema:Organisation
99 N6ee0b9a2a271485cae188601bf3b9e54 rdf:first Nc7dc6efb21b44fa18d0f175bdd0e4709
100 rdf:rest rdf:nil
101 N707f7091b63d45e5a065153b9f72f6ce schema:isbn 978-3-319-68473-4
102 978-3-319-68474-1
103 schema:name Similarity Search and Applications
104 rdf:type schema:Book
105 N74bb5f2704a747adbd7a42050b7cedcf rdf:first N03a2aa4637be46848bf622d73eb6e6ee
106 rdf:rest Nde1dad8aa55a4cb7ab2f3f1d2e1df21e
107 N8720846315f6496b81aea112626e7fea rdf:first sg:person.0635776571.01
108 rdf:rest rdf:nil
109 N8cfe169030b54297a7ba58d2434dac35 rdf:first N0ac2dddb61254b7fbd3b3d2e59ee9428
110 rdf:rest N74bb5f2704a747adbd7a42050b7cedcf
111 Nb0c358aca58a43e3ae846f4ccb231672 schema:name doi
112 schema:value 10.1007/978-3-319-68474-1_23
113 rdf:type schema:PropertyValue
114 Nb84b76c3eb2e432590cb68589153d116 rdf:first sg:person.016251627170.54
115 rdf:rest N094fef6dfcf94a04887bb0dd405f3c8e
116 Nc7dc6efb21b44fa18d0f175bdd0e4709 schema:familyName Seidl
117 schema:givenName Thomas
118 rdf:type schema:Person
119 Ndcdac11aeced4729aaeea43a662ab283 rdf:first sg:person.01165671765.01
120 rdf:rest N8720846315f6496b81aea112626e7fea
121 Nde1dad8aa55a4cb7ab2f3f1d2e1df21e rdf:first N4b60a2ece12e4151b48c0779c1979966
122 rdf:rest N6ee0b9a2a271485cae188601bf3b9e54
123 Nf09aeddc71444fe99eb2f98cc73189de rdf:first sg:person.014055264163.61
124 rdf:rest N526043d481194b12a46b5789adc6fb29
125 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
126 schema:name Information and Computing Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
129 schema:name Information Systems
130 rdf:type schema:DefinedTerm
131 sg:person.01165671765.01 schema:affiliation grid-institutes:grid.410413.3
132 schema:familyName Schreck
133 schema:givenName Tobias
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165671765.01
135 rdf:type schema:Person
136 sg:person.014055264163.61 schema:affiliation grid-institutes:grid.9811.1
137 schema:familyName Seebacher
138 schema:givenName Daniel
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014055264163.61
140 rdf:type schema:Person
141 sg:person.014124537627.11 schema:affiliation grid-institutes:grid.9811.1
142 schema:familyName Häußler
143 schema:givenName Johannes
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014124537627.11
145 rdf:type schema:Person
146 sg:person.015754073455.65 schema:affiliation grid-institutes:grid.7400.3
147 schema:familyName Janetzko
148 schema:givenName Halldor
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015754073455.65
150 rdf:type schema:Person
151 sg:person.016251627170.54 schema:affiliation grid-institutes:grid.9811.1
152 schema:familyName Stein
153 schema:givenName Manuel
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016251627170.54
155 rdf:type schema:Person
156 sg:person.0635776571.01 schema:affiliation grid-institutes:grid.9811.1
157 schema:familyName Keim
158 schema:givenName Daniel A.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01
160 rdf:type schema:Person
161 grid-institutes:grid.410413.3 schema:alternateName TU Graz, Graz, Austria
162 schema:name TU Graz, Graz, Austria
163 rdf:type schema:Organization
164 grid-institutes:grid.7400.3 schema:alternateName University of Zurich, Zürich, Switzerland
165 schema:name University of Zurich, Zürich, Switzerland
166 rdf:type schema:Organization
167 grid-institutes:grid.9811.1 schema:alternateName University of Konstanz, Konstanz, Germany
168 schema:name University of Konstanz, Konstanz, Germany
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...