Visual Analytics and Similarity Search: Concepts and Challenges for Effective Retrieval Considering Users, Tasks, and Data View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-09-28

AUTHORS

Daniel Seebacher , Johannes Häußler , Manuel Stein , Halldor Janetzko , Tobias Schreck , Daniel A. Keim

ABSTRACT

A major challenge of the contemporary information age is the overwhelming and increasing data amount, especially when looking for specific information. Searching for relevant information is no longer manually possible, but has to rely on automatic methods, specifically, similarity search. From a formal perspective, similarity search can be seen as the problem of finding entities, which are considered to be similar to a query with respect to certain describing features. The question which features or which weighted combination of features to use for a given query creates a need for semi-automatic methods to address the needs of diverse users. Furthermore, the quality of the results of a similarity search is more than effectiveness, measured by precision and recall. The user ideally needs to trust the results and understand how they were computed. We propose to apply Visual Analytics methodologies, for synergistic cooperation of user and algorithms, to integrate three key dimensions of similarity search: users, tasks, and data for effective search. However, there exists a gap in knowledge how user, task as well as the available data influence each other and the similarity search. In this concept paper, we envision how Visual Analytics can be used to tackle current challenges of similarity search. More... »

PAGES

324-332

Book

TITLE

Similarity Search and Applications

ISBN

978-3-319-68473-4
978-3-319-68474-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-68474-1_23

DOI

http://dx.doi.org/10.1007/978-3-319-68474-1_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091978624


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seebacher", 
        "givenName": "Daniel", 
        "id": "sg:person.014055264163.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014055264163.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00e4u\u00dfler", 
        "givenName": "Johannes", 
        "id": "sg:person.014124537627.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014124537627.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stein", 
        "givenName": "Manuel", 
        "id": "sg:person.016251627170.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016251627170.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Zurich, Z\u00fcrich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.7400.3", 
          "name": [
            "University of Zurich, Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Janetzko", 
        "givenName": "Halldor", 
        "id": "sg:person.015754073455.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015754073455.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Graz, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "TU Graz, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schreck", 
        "givenName": "Tobias", 
        "id": "sg:person.01165671765.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165671765.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keim", 
        "givenName": "Daniel A.", 
        "id": "sg:person.0635776571.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-09-28", 
    "datePublishedReg": "2017-09-28", 
    "description": "A major challenge of the contemporary information age is the overwhelming and increasing data amount, especially when looking for specific information. Searching for relevant information is no longer manually possible, but has to rely on automatic methods, specifically, similarity search. From a formal perspective, similarity search can be seen as the problem of finding entities, which are considered to be similar to a query with respect to certain describing features. The question which features or which weighted combination of features to use for a given query creates a need for semi-automatic methods to address the needs of diverse users. Furthermore, the quality of the results of a similarity search is more than effectiveness, measured by precision and recall. The user ideally needs to trust the results and understand how they were computed. We propose to apply Visual Analytics methodologies, for synergistic cooperation of user and algorithms, to integrate three key dimensions of similarity search: users, tasks, and data for effective search. However, there exists a gap in knowledge how user, task as well as the available data influence each other and the similarity search. In this concept paper, we envision how Visual Analytics can be used to tackle current challenges of similarity search.", 
    "editor": [
      {
        "familyName": "Beecks", 
        "givenName": "Christian", 
        "type": "Person"
      }, 
      {
        "familyName": "Borutta", 
        "givenName": "Felix", 
        "type": "Person"
      }, 
      {
        "familyName": "Kr\u00f6ger", 
        "givenName": "Peer", 
        "type": "Person"
      }, 
      {
        "familyName": "Seidl", 
        "givenName": "Thomas", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-68474-1_23", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-68473-4", 
        "978-3-319-68474-1"
      ], 
      "name": "Similarity Search and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "similarity search", 
      "visual analytics", 
      "visual analytics methodology", 
      "semi-automatic method", 
      "contemporary information age", 
      "data amount", 
      "diverse users", 
      "effective search", 
      "automatic method", 
      "users", 
      "combination of features", 
      "information age", 
      "queries", 
      "analytics", 
      "formal perspective", 
      "relevant information", 
      "analytic methodology", 
      "data influence", 
      "task", 
      "specific information", 
      "search", 
      "concept paper", 
      "major challenge", 
      "information", 
      "challenges", 
      "algorithm", 
      "features", 
      "current challenges", 
      "recall", 
      "need", 
      "data", 
      "method", 
      "effectiveness", 
      "entities", 
      "precision", 
      "methodology", 
      "synergistic cooperation", 
      "key dimensions", 
      "concept", 
      "cooperation", 
      "quality", 
      "knowledge", 
      "results", 
      "amount", 
      "perspective", 
      "dimensions", 
      "gap", 
      "respect", 
      "combination", 
      "questions", 
      "influence", 
      "age", 
      "paper", 
      "problem"
    ], 
    "name": "Visual Analytics and Similarity Search: Concepts and Challenges for Effective Retrieval Considering Users, Tasks, and Data", 
    "pagination": "324-332", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091978624"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-68474-1_23"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-68474-1_23", 
      "https://app.dimensions.ai/details/publication/pub.1091978624"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_155.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-68474-1_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68474-1_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68474-1_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68474-1_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68474-1_23'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      22 PREDICATES      78 URIs      71 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-68474-1_23 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N6fec64917af0430ca7ff1d664768c6d4
4 schema:datePublished 2017-09-28
5 schema:datePublishedReg 2017-09-28
6 schema:description A major challenge of the contemporary information age is the overwhelming and increasing data amount, especially when looking for specific information. Searching for relevant information is no longer manually possible, but has to rely on automatic methods, specifically, similarity search. From a formal perspective, similarity search can be seen as the problem of finding entities, which are considered to be similar to a query with respect to certain describing features. The question which features or which weighted combination of features to use for a given query creates a need for semi-automatic methods to address the needs of diverse users. Furthermore, the quality of the results of a similarity search is more than effectiveness, measured by precision and recall. The user ideally needs to trust the results and understand how they were computed. We propose to apply Visual Analytics methodologies, for synergistic cooperation of user and algorithms, to integrate three key dimensions of similarity search: users, tasks, and data for effective search. However, there exists a gap in knowledge how user, task as well as the available data influence each other and the similarity search. In this concept paper, we envision how Visual Analytics can be used to tackle current challenges of similarity search.
7 schema:editor N0154456ba37d45558a9052a4d1c4856b
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Ncf73ca96ceed4b7db71f86ebf5468d1a
11 schema:keywords age
12 algorithm
13 amount
14 analytic methodology
15 analytics
16 automatic method
17 challenges
18 combination
19 combination of features
20 concept
21 concept paper
22 contemporary information age
23 cooperation
24 current challenges
25 data
26 data amount
27 data influence
28 dimensions
29 diverse users
30 effective search
31 effectiveness
32 entities
33 features
34 formal perspective
35 gap
36 influence
37 information
38 information age
39 key dimensions
40 knowledge
41 major challenge
42 method
43 methodology
44 need
45 paper
46 perspective
47 precision
48 problem
49 quality
50 queries
51 questions
52 recall
53 relevant information
54 respect
55 results
56 search
57 semi-automatic method
58 similarity search
59 specific information
60 synergistic cooperation
61 task
62 users
63 visual analytics
64 visual analytics methodology
65 schema:name Visual Analytics and Similarity Search: Concepts and Challenges for Effective Retrieval Considering Users, Tasks, and Data
66 schema:pagination 324-332
67 schema:productId N4532435a78014a488d1a402b9baceb23
68 N5e15b2b109a749a682728006e3b173d4
69 schema:publisher N1ac35133184e46269ef4505887088925
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091978624
71 https://doi.org/10.1007/978-3-319-68474-1_23
72 schema:sdDatePublished 2022-09-02T16:10
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N0c6e799a984e4da6afed830a83f2d2d9
75 schema:url https://doi.org/10.1007/978-3-319-68474-1_23
76 sgo:license sg:explorer/license/
77 sgo:sdDataset chapters
78 rdf:type schema:Chapter
79 N0154456ba37d45558a9052a4d1c4856b rdf:first N0ef322d657d54168b5d7eca2846fe823
80 rdf:rest N682a4e8953d54b458772bf5d03c48d6f
81 N0302e0fa063440edb4b10ebaa472c3eb schema:familyName Borutta
82 schema:givenName Felix
83 rdf:type schema:Person
84 N0c6e799a984e4da6afed830a83f2d2d9 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N0ef322d657d54168b5d7eca2846fe823 schema:familyName Beecks
87 schema:givenName Christian
88 rdf:type schema:Person
89 N1a8409998a8645dca90eb72672d246f3 rdf:first sg:person.014124537627.11
90 rdf:rest N308c7e73d5b1459aa3e3951750d032e7
91 N1ac35133184e46269ef4505887088925 schema:name Springer Nature
92 rdf:type schema:Organisation
93 N308c7e73d5b1459aa3e3951750d032e7 rdf:first sg:person.016251627170.54
94 rdf:rest Ne6aa40c426fe45b996412f3fd9389585
95 N4532435a78014a488d1a402b9baceb23 schema:name doi
96 schema:value 10.1007/978-3-319-68474-1_23
97 rdf:type schema:PropertyValue
98 N464caa8620b941ec8c95adea87dddab5 rdf:first Ne39f2a975b954ec9b9bc16cbbf9b2d01
99 rdf:rest rdf:nil
100 N5e15b2b109a749a682728006e3b173d4 schema:name dimensions_id
101 schema:value pub.1091978624
102 rdf:type schema:PropertyValue
103 N5eb88210561e4d53a462ebb353d3a706 rdf:first N8e2692397b5e4fb28a2938db3aa7da5e
104 rdf:rest N464caa8620b941ec8c95adea87dddab5
105 N682a4e8953d54b458772bf5d03c48d6f rdf:first N0302e0fa063440edb4b10ebaa472c3eb
106 rdf:rest N5eb88210561e4d53a462ebb353d3a706
107 N6fec64917af0430ca7ff1d664768c6d4 rdf:first sg:person.014055264163.61
108 rdf:rest N1a8409998a8645dca90eb72672d246f3
109 N8e2692397b5e4fb28a2938db3aa7da5e schema:familyName Kröger
110 schema:givenName Peer
111 rdf:type schema:Person
112 N968ed9a17a73415b8651bf07de34fd2a rdf:first sg:person.0635776571.01
113 rdf:rest rdf:nil
114 N9fa920a8c690475182195d7b16662edb rdf:first sg:person.01165671765.01
115 rdf:rest N968ed9a17a73415b8651bf07de34fd2a
116 Ncf73ca96ceed4b7db71f86ebf5468d1a schema:isbn 978-3-319-68473-4
117 978-3-319-68474-1
118 schema:name Similarity Search and Applications
119 rdf:type schema:Book
120 Ne39f2a975b954ec9b9bc16cbbf9b2d01 schema:familyName Seidl
121 schema:givenName Thomas
122 rdf:type schema:Person
123 Ne6aa40c426fe45b996412f3fd9389585 rdf:first sg:person.015754073455.65
124 rdf:rest N9fa920a8c690475182195d7b16662edb
125 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
126 schema:name Information and Computing Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
129 schema:name Information Systems
130 rdf:type schema:DefinedTerm
131 sg:person.01165671765.01 schema:affiliation grid-institutes:grid.410413.3
132 schema:familyName Schreck
133 schema:givenName Tobias
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165671765.01
135 rdf:type schema:Person
136 sg:person.014055264163.61 schema:affiliation grid-institutes:grid.9811.1
137 schema:familyName Seebacher
138 schema:givenName Daniel
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014055264163.61
140 rdf:type schema:Person
141 sg:person.014124537627.11 schema:affiliation grid-institutes:grid.9811.1
142 schema:familyName Häußler
143 schema:givenName Johannes
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014124537627.11
145 rdf:type schema:Person
146 sg:person.015754073455.65 schema:affiliation grid-institutes:grid.7400.3
147 schema:familyName Janetzko
148 schema:givenName Halldor
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015754073455.65
150 rdf:type schema:Person
151 sg:person.016251627170.54 schema:affiliation grid-institutes:grid.9811.1
152 schema:familyName Stein
153 schema:givenName Manuel
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016251627170.54
155 rdf:type schema:Person
156 sg:person.0635776571.01 schema:affiliation grid-institutes:grid.9811.1
157 schema:familyName Keim
158 schema:givenName Daniel A.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01
160 rdf:type schema:Person
161 grid-institutes:grid.410413.3 schema:alternateName TU Graz, Graz, Austria
162 schema:name TU Graz, Graz, Austria
163 rdf:type schema:Organization
164 grid-institutes:grid.7400.3 schema:alternateName University of Zurich, Zürich, Switzerland
165 schema:name University of Zurich, Zürich, Switzerland
166 rdf:type schema:Organization
167 grid-institutes:grid.9811.1 schema:alternateName University of Konstanz, Konstanz, Germany
168 schema:name University of Konstanz, Konstanz, Germany
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...