Detecting Stuttering Events in Transcripts of Children’s Speech View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017-09-27

AUTHORS

Sadeen Alharbi , Madina Hasan , Anthony J. H. Simons , Shelagh Brumfitt , Phil Green

ABSTRACT

Stuttering is a common problem in childhood that may persist into adulthood if not treated in early stages. Techniques from spoken language understanding may be applied to provide automated diagnosis of stuttering from children speech. The main challenges however lie in the lack of training data and the high dimensionality of this data. This study investigates the applicability of machine learning approaches for detecting stuttering events in transcripts. Two machine learning approaches were applied, namely HELM and CRF. The performance of these two approaches are compared, and the effect of data augmentation is examined in both approaches. Experimental results show that CRF outperforms HELM by 2.2% in the baseline experiments. Data augmentation helps improve systems performance, especially for rarely available events. In addition to the annotated augmented data, this study also adds annotated human transcriptions from real stuttered children’s speech to help expand the research in this field. More... »

PAGES

217-228

References to SciGraph publications

Book

TITLE

Statistical Language and Speech Processing

ISBN

978-3-319-68455-0
978-3-319-68456-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-68456-7_18

DOI

http://dx.doi.org/10.1007/978-3-319-68456-7_18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091962646


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Department of Computer Science, The University of Sheffield, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alharbi", 
        "givenName": "Sadeen", 
        "id": "sg:person.011400723323.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011400723323.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Department of Computer Science, The University of Sheffield, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasan", 
        "givenName": "Madina", 
        "id": "sg:person.013571244723.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013571244723.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Department of Computer Science, The University of Sheffield, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Simons", 
        "givenName": "Anthony J. H.", 
        "id": "sg:person.011513005423.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011513005423.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Department of Human Communication Sciences, The University of Sheffield, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brumfitt", 
        "givenName": "Shelagh", 
        "id": "sg:person.01365014165.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365014165.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Department of Computer Science, The University of Sheffield, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Green", 
        "givenName": "Phil", 
        "id": "sg:person.0712117224.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712117224.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0094-730x(01)00102-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003240472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-46562-3_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016714323", 
          "https://doi.org/10.1007/978-3-319-46562-3_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1044/jshr.3402.279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022301253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-81-322-2012-1_66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033562681", 
          "https://doi.org/10.1007/978-81-322-2012-1_66"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1044/jslhr.4205.1097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035005330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.38520.451840.e0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038654134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1044/1092-4388(2009/07-0129)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042972554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0094-730x(99)00029-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047916545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000319913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049937033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfludis.2006.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053526910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.1996.541118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094110135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21437/interspeech.2016-1388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099086690"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09-27", 
    "datePublishedReg": "2017-09-27", 
    "description": "Stuttering is a common problem in childhood that may persist into adulthood if not treated in early stages. Techniques from spoken language understanding may be applied to provide automated diagnosis of stuttering from children speech. The main challenges however lie in the lack of training data and the high dimensionality of this data. This study investigates the applicability of machine learning approaches for detecting stuttering events in transcripts. Two machine learning approaches were applied, namely HELM and CRF. The performance of these two approaches are compared, and the effect of data augmentation is examined in both approaches. Experimental results show that CRF outperforms HELM by 2.2% in the baseline experiments. Data augmentation helps improve systems performance, especially for rarely available events. In addition to the annotated augmented data, this study also adds annotated human transcriptions from real stuttered children\u2019s speech to help expand the research in this field.", 
    "editor": [
      {
        "familyName": "Camelin", 
        "givenName": "Nathalie", 
        "type": "Person"
      }, 
      {
        "familyName": "Est\u00e8ve", 
        "givenName": "Yannick", 
        "type": "Person"
      }, 
      {
        "familyName": "Mart\u00edn-Vide", 
        "givenName": "Carlos", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-68456-7_18", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-68455-0", 
        "978-3-319-68456-7"
      ], 
      "name": "Statistical Language and Speech Processing", 
      "type": "Book"
    }, 
    "name": "Detecting Stuttering Events in Transcripts of Children\u2019s Speech", 
    "pagination": "217-228", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-68456-7_18"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "826aae175ceeeedae25b619c995621ca11f157717b6dbfbd0940b795952f17e8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091962646"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-68456-7_18", 
      "https://app.dimensions.ai/details/publication/pub.1091962646"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100778_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-68456-7_18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68456-7_18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68456-7_18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68456-7_18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68456-7_18'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      23 PREDICATES      38 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-68456-7_18 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N38674894e74a413c84e7f91b3bcecfe0
4 schema:citation sg:pub.10.1007/978-3-319-46562-3_9
5 sg:pub.10.1007/978-81-322-2012-1_66
6 https://doi.org/10.1016/j.jfludis.2006.07.002
7 https://doi.org/10.1016/s0094-730x(01)00102-4
8 https://doi.org/10.1016/s0094-730x(99)00029-7
9 https://doi.org/10.1044/1092-4388(2009/07-0129)
10 https://doi.org/10.1044/jshr.3402.279
11 https://doi.org/10.1044/jslhr.4205.1097
12 https://doi.org/10.1109/icassp.1996.541118
13 https://doi.org/10.1136/bmj.38520.451840.e0
14 https://doi.org/10.1159/000319913
15 https://doi.org/10.21437/interspeech.2016-1388
16 schema:datePublished 2017-09-27
17 schema:datePublishedReg 2017-09-27
18 schema:description Stuttering is a common problem in childhood that may persist into adulthood if not treated in early stages. Techniques from spoken language understanding may be applied to provide automated diagnosis of stuttering from children speech. The main challenges however lie in the lack of training data and the high dimensionality of this data. This study investigates the applicability of machine learning approaches for detecting stuttering events in transcripts. Two machine learning approaches were applied, namely HELM and CRF. The performance of these two approaches are compared, and the effect of data augmentation is examined in both approaches. Experimental results show that CRF outperforms HELM by 2.2% in the baseline experiments. Data augmentation helps improve systems performance, especially for rarely available events. In addition to the annotated augmented data, this study also adds annotated human transcriptions from real stuttered children’s speech to help expand the research in this field.
19 schema:editor N83efec6c18db4176a66d1953f0033207
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N12290ea188964ba2b937ee6aad9915cc
24 schema:name Detecting Stuttering Events in Transcripts of Children’s Speech
25 schema:pagination 217-228
26 schema:productId N7851774957fe4d8392d13b5289241d2e
27 N9f064ea88ba847a1aa736af54acc6c37
28 Nf7a068a997e04b21b78e70d1eb04ec96
29 schema:publisher N26e241b12b6940359b4b5ac9f2a06ca6
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091962646
31 https://doi.org/10.1007/978-3-319-68456-7_18
32 schema:sdDatePublished 2019-04-16T04:59
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N135a964ad115497f87aab30a0f578dbf
35 schema:url https://link.springer.com/10.1007%2F978-3-319-68456-7_18
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N0065e850162b4fd2986d375316d3accf rdf:first sg:person.013571244723.02
40 rdf:rest Nf70caa40179049a5819d563e5355e192
41 N12290ea188964ba2b937ee6aad9915cc schema:isbn 978-3-319-68455-0
42 978-3-319-68456-7
43 schema:name Statistical Language and Speech Processing
44 rdf:type schema:Book
45 N135a964ad115497f87aab30a0f578dbf schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N1af8dbb9dc4c40bc80ec7a061ba8591a schema:familyName Martín-Vide
48 schema:givenName Carlos
49 rdf:type schema:Person
50 N26e241b12b6940359b4b5ac9f2a06ca6 schema:location Cham
51 schema:name Springer International Publishing
52 rdf:type schema:Organisation
53 N38674894e74a413c84e7f91b3bcecfe0 rdf:first sg:person.011400723323.76
54 rdf:rest N0065e850162b4fd2986d375316d3accf
55 N3fe73c67bd2e46e1a45172f549df64bc rdf:first N1af8dbb9dc4c40bc80ec7a061ba8591a
56 rdf:rest rdf:nil
57 N4517e9563fd44fcea674c9af325639e3 schema:familyName Estève
58 schema:givenName Yannick
59 rdf:type schema:Person
60 N4617303532ed4e6c883101caf5a5be88 rdf:first sg:person.0712117224.27
61 rdf:rest rdf:nil
62 N48b93e9ac8474b7cb1a2488aecc6fc05 rdf:first N4517e9563fd44fcea674c9af325639e3
63 rdf:rest N3fe73c67bd2e46e1a45172f549df64bc
64 N66671cee0d204e5ba2d7fcb4167b7226 schema:familyName Camelin
65 schema:givenName Nathalie
66 rdf:type schema:Person
67 N7851774957fe4d8392d13b5289241d2e schema:name readcube_id
68 schema:value 826aae175ceeeedae25b619c995621ca11f157717b6dbfbd0940b795952f17e8
69 rdf:type schema:PropertyValue
70 N83efec6c18db4176a66d1953f0033207 rdf:first N66671cee0d204e5ba2d7fcb4167b7226
71 rdf:rest N48b93e9ac8474b7cb1a2488aecc6fc05
72 N9f064ea88ba847a1aa736af54acc6c37 schema:name doi
73 schema:value 10.1007/978-3-319-68456-7_18
74 rdf:type schema:PropertyValue
75 Nd88c11c38c19496d8fb0e39f75382c7c rdf:first sg:person.01365014165.02
76 rdf:rest N4617303532ed4e6c883101caf5a5be88
77 Nf70caa40179049a5819d563e5355e192 rdf:first sg:person.011513005423.32
78 rdf:rest Nd88c11c38c19496d8fb0e39f75382c7c
79 Nf7a068a997e04b21b78e70d1eb04ec96 schema:name dimensions_id
80 schema:value pub.1091962646
81 rdf:type schema:PropertyValue
82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
83 schema:name Information and Computing Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
86 schema:name Artificial Intelligence and Image Processing
87 rdf:type schema:DefinedTerm
88 sg:person.011400723323.76 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
89 schema:familyName Alharbi
90 schema:givenName Sadeen
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011400723323.76
92 rdf:type schema:Person
93 sg:person.011513005423.32 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
94 schema:familyName Simons
95 schema:givenName Anthony J. H.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011513005423.32
97 rdf:type schema:Person
98 sg:person.013571244723.02 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
99 schema:familyName Hasan
100 schema:givenName Madina
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013571244723.02
102 rdf:type schema:Person
103 sg:person.01365014165.02 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
104 schema:familyName Brumfitt
105 schema:givenName Shelagh
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365014165.02
107 rdf:type schema:Person
108 sg:person.0712117224.27 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
109 schema:familyName Green
110 schema:givenName Phil
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712117224.27
112 rdf:type schema:Person
113 sg:pub.10.1007/978-3-319-46562-3_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016714323
114 https://doi.org/10.1007/978-3-319-46562-3_9
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/978-81-322-2012-1_66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033562681
117 https://doi.org/10.1007/978-81-322-2012-1_66
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.jfludis.2006.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053526910
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0094-730x(01)00102-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003240472
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/s0094-730x(99)00029-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047916545
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1044/1092-4388(2009/07-0129) schema:sameAs https://app.dimensions.ai/details/publication/pub.1042972554
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1044/jshr.3402.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022301253
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1044/jslhr.4205.1097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035005330
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/icassp.1996.541118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094110135
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1136/bmj.38520.451840.e0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038654134
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1159/000319913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049937033
136 rdf:type schema:CreativeWork
137 https://doi.org/10.21437/interspeech.2016-1388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099086690
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.11835.3e schema:alternateName University of Sheffield
140 schema:name Department of Computer Science, The University of Sheffield, Sheffield, UK
141 Department of Human Communication Sciences, The University of Sheffield, Sheffield, UK
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...