k-Means Clustering with Hölder Divergences View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-10-24

AUTHORS

Frank Nielsen , Ke Sun , Stéphane Marchand-Maillet

ABSTRACT

We introduced two novel classes of Hölder divergences and Hölder pseudo-divergences that are both invariant to rescaling, and that both encapsulate the Cauchy-Schwarz divergence and the skew Bhattacharyya divergences. We review the elementary concepts of those parametric divergences, and perform a clustering analysis on two synthetic datasets. It is shown experimentally that the symmetrized Hölder divergences consistently outperform significantly the Cauchy-Schwarz divergence in clustering tasks. More... »

PAGES

856-863

Book

TITLE

Geometric Science of Information

ISBN

978-3-319-68444-4
978-3-319-68445-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_98

DOI

http://dx.doi.org/10.1007/978-3-319-68445-1_98

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092381085


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sony Computer Science Laboratories", 
          "id": "https://www.grid.ac/institutes/grid.452725.3", 
          "name": [
            "\u00c9cole Polytechnique, Palaiseau, France", 
            "Sony Computer Science Laboratories Inc., Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nielsen", 
        "givenName": "Frank", 
        "id": "sg:person.012062051333.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012062051333.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Abdullah University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.45672.32", 
          "name": [
            "King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Ke", 
        "id": "sg:person.012431716123.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012431716123.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Geneva", 
          "id": "https://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "University of Geneva, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marchand-Maillet", 
        "givenName": "St\u00e9phane", 
        "id": "sg:person.016472056171.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016472056171.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.image.2016.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010040239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/e16052611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049247392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2011.2159046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061653420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2014.2324585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3150/13-bej557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071056946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/e19030122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084435214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2015.7178324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093656624"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10-24", 
    "datePublishedReg": "2017-10-24", 
    "description": "We introduced two novel classes of H\u00f6lder divergences and H\u00f6lder pseudo-divergences that are both invariant to rescaling, and that both encapsulate the Cauchy-Schwarz divergence and the skew Bhattacharyya divergences. We review the elementary concepts of those parametric divergences, and perform a clustering analysis on two synthetic datasets. It is shown experimentally that the symmetrized H\u00f6lder divergences consistently outperform significantly the Cauchy-Schwarz divergence in clustering tasks.", 
    "editor": [
      {
        "familyName": "Nielsen", 
        "givenName": "Frank", 
        "type": "Person"
      }, 
      {
        "familyName": "Barbaresco", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-68445-1_98", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-68444-4", 
        "978-3-319-68445-1"
      ], 
      "name": "Geometric Science of Information", 
      "type": "Book"
    }, 
    "name": "k-Means Clustering with H\u00f6lder Divergences", 
    "pagination": "856-863", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-68445-1_98"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "70e0a7e8f9cc39653682d8be3104f4a0e2dcb6532d9e36414efe869288e7a61e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092381085"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-68445-1_98", 
      "https://app.dimensions.ai/details/publication/pub.1092381085"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100783_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-68445-1_98"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_98'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_98'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_98'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_98'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      23 PREDICATES      33 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-68445-1_98 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nccedb77eff4245f488410717789c23d8
4 schema:citation https://doi.org/10.1016/j.image.2016.01.005
5 https://doi.org/10.1109/icassp.2015.7178324
6 https://doi.org/10.1109/tit.2011.2159046
7 https://doi.org/10.1109/tpami.2014.2324585
8 https://doi.org/10.3150/13-bej557
9 https://doi.org/10.3390/e16052611
10 https://doi.org/10.3390/e19030122
11 schema:datePublished 2017-10-24
12 schema:datePublishedReg 2017-10-24
13 schema:description We introduced two novel classes of Hölder divergences and Hölder pseudo-divergences that are both invariant to rescaling, and that both encapsulate the Cauchy-Schwarz divergence and the skew Bhattacharyya divergences. We review the elementary concepts of those parametric divergences, and perform a clustering analysis on two synthetic datasets. It is shown experimentally that the symmetrized Hölder divergences consistently outperform significantly the Cauchy-Schwarz divergence in clustering tasks.
14 schema:editor Ndaa6710090f444c692198997c845455b
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N8606178689f84c39a937969ff7bc4fe5
19 schema:name k-Means Clustering with Hölder Divergences
20 schema:pagination 856-863
21 schema:productId N1be62fc10dbc4291b2fda316a1800a3e
22 Nf2adbbd8e316418eabb28d7c0540665f
23 Nfd3a71788c60484788229b3cfec2476c
24 schema:publisher N29bd7f6443e44bc4886949f80a999fda
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092381085
26 https://doi.org/10.1007/978-3-319-68445-1_98
27 schema:sdDatePublished 2019-04-16T04:59
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N2c751ddbc5004b07b77651c87cea6f31
30 schema:url https://link.springer.com/10.1007%2F978-3-319-68445-1_98
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N1be62fc10dbc4291b2fda316a1800a3e schema:name readcube_id
35 schema:value 70e0a7e8f9cc39653682d8be3104f4a0e2dcb6532d9e36414efe869288e7a61e
36 rdf:type schema:PropertyValue
37 N25ed53fd95e2483c9ca3ded309210e89 rdf:first N7cf92208be66426ebab5a6a651f4c133
38 rdf:rest rdf:nil
39 N29bd7f6443e44bc4886949f80a999fda schema:location Cham
40 schema:name Springer International Publishing
41 rdf:type schema:Organisation
42 N2c751ddbc5004b07b77651c87cea6f31 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N38703c9a4f244e98a83bdfbd873ac5fe schema:familyName Nielsen
45 schema:givenName Frank
46 rdf:type schema:Person
47 N7cf92208be66426ebab5a6a651f4c133 schema:familyName Barbaresco
48 schema:givenName Frédéric
49 rdf:type schema:Person
50 N8606178689f84c39a937969ff7bc4fe5 schema:isbn 978-3-319-68444-4
51 978-3-319-68445-1
52 schema:name Geometric Science of Information
53 rdf:type schema:Book
54 Nccedb77eff4245f488410717789c23d8 rdf:first sg:person.012062051333.43
55 rdf:rest Nee3c527a446049db90f569ccf1d021f0
56 Ndaa6710090f444c692198997c845455b rdf:first N38703c9a4f244e98a83bdfbd873ac5fe
57 rdf:rest N25ed53fd95e2483c9ca3ded309210e89
58 Nebf44f5fc22e415195a32d793df5ae03 rdf:first sg:person.016472056171.12
59 rdf:rest rdf:nil
60 Nee3c527a446049db90f569ccf1d021f0 rdf:first sg:person.012431716123.70
61 rdf:rest Nebf44f5fc22e415195a32d793df5ae03
62 Nf2adbbd8e316418eabb28d7c0540665f schema:name dimensions_id
63 schema:value pub.1092381085
64 rdf:type schema:PropertyValue
65 Nfd3a71788c60484788229b3cfec2476c schema:name doi
66 schema:value 10.1007/978-3-319-68445-1_98
67 rdf:type schema:PropertyValue
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information Systems
73 rdf:type schema:DefinedTerm
74 sg:person.012062051333.43 schema:affiliation https://www.grid.ac/institutes/grid.452725.3
75 schema:familyName Nielsen
76 schema:givenName Frank
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012062051333.43
78 rdf:type schema:Person
79 sg:person.012431716123.70 schema:affiliation https://www.grid.ac/institutes/grid.45672.32
80 schema:familyName Sun
81 schema:givenName Ke
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012431716123.70
83 rdf:type schema:Person
84 sg:person.016472056171.12 schema:affiliation https://www.grid.ac/institutes/grid.8591.5
85 schema:familyName Marchand-Maillet
86 schema:givenName Stéphane
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016472056171.12
88 rdf:type schema:Person
89 https://doi.org/10.1016/j.image.2016.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010040239
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1109/icassp.2015.7178324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093656624
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/tit.2011.2159046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061653420
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/tpami.2014.2324585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744679
96 rdf:type schema:CreativeWork
97 https://doi.org/10.3150/13-bej557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071056946
98 rdf:type schema:CreativeWork
99 https://doi.org/10.3390/e16052611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049247392
100 rdf:type schema:CreativeWork
101 https://doi.org/10.3390/e19030122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084435214
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.452725.3 schema:alternateName Sony Computer Science Laboratories
104 schema:name Sony Computer Science Laboratories Inc., Tokyo, Japan
105 École Polytechnique, Palaiseau, France
106 rdf:type schema:Organization
107 https://www.grid.ac/institutes/grid.45672.32 schema:alternateName King Abdullah University of Science and Technology
108 schema:name King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
109 rdf:type schema:Organization
110 https://www.grid.ac/institutes/grid.8591.5 schema:alternateName University of Geneva
111 schema:name University of Geneva, Geneva, Switzerland
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...