Co-occurrence Matrix of Covariance Matrices: A Novel Coding Model for the Classification of Texture Images View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017-10-24

AUTHORS

Ioana Ilea , Lionel Bombrun , Salem Said , Yannick Berthoumieu

ABSTRACT

This paper introduces a novel local model for the classification of covariance matrices: the co-occurrence matrix of covariance matrices. Contrary to state-of-the-art models (BoRW, R-VLAD and RFV), this local model exploits the spatial distribution of the patches. Starting from the generative mixture model of Riemannian Gaussian distributions, we introduce this local model. An experiment on texture image classification is then conducted on the VisTex and Outex_TC000_13 databases to evaluate its potential. More... »

PAGES

736-744

References to SciGraph publications

Book

TITLE

Geometric Science of Information

ISBN

978-3-319-68444-4
978-3-319-68445-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_85

DOI

http://dx.doi.org/10.1007/978-3-319-68445-1_85

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092381071


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Cluj-Napoca", 
          "id": "https://www.grid.ac/institutes/grid.6827.b", 
          "name": [
            "Laboratoire IMS, Groupe Signal et Image, Universit\u00e9 de Bordeaux, Bordeaux, France", 
            "Technical University of Cluj-Napoca, Cluj-Napoca, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ilea", 
        "givenName": "Ioana", 
        "id": "sg:person.011753202006.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011753202006.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "Laboratoire IMS, Groupe Signal et Image, Universit\u00e9 de Bordeaux, Bordeaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bombrun", 
        "givenName": "Lionel", 
        "id": "sg:person.010253405443.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253405443.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "Laboratoire IMS, Groupe Signal et Image, Universit\u00e9 de Bordeaux, Bordeaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Said", 
        "givenName": "Salem", 
        "id": "sg:person.016161076243.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016161076243.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "Laboratoire IMS, Groupe Signal et Image, Universit\u00e9 de Bordeaux, Bordeaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berthoumieu", 
        "givenName": "Yannick", 
        "id": "sg:person.010636166221.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636166221.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-75690-3_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005415020", 
          "https://doi.org/10.1007/978-3-540-75690-3_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/014311698214262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006451530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11744047_45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007677236", 
          "https://doi.org/10.1007/11744047_45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11744047_45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007677236", 
          "https://doi.org/10.1007/11744047_45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.09.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013429524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2011.12.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027198546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-25040-3_40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030593140", 
          "https://doi.org/10.1007/978-3-319-25040-3_40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2013.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036730534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compmedimag.2010.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040693192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15561-1_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045344996", 
          "https://doi.org/10.1007/978-3-642-15561-1_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15561-1_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045344996", 
          "https://doi.org/10.1007/978-3-642-15561-1_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cvi.2014.0018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056825338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2016.2526078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061614248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2016.2591921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2017.2653803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084206540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5540207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093519327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/adcom.2007.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093683707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093758407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093758407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2016.7533019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094060329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7299129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094109620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2015.7351036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094420622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5540009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095484171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9780898717778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556566"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10-24", 
    "datePublishedReg": "2017-10-24", 
    "description": "This paper introduces a novel local model for the classification of covariance matrices: the co-occurrence matrix of covariance matrices. Contrary to state-of-the-art models (BoRW, R-VLAD and RFV), this local model exploits the spatial distribution of the patches. Starting from the generative mixture model of Riemannian Gaussian distributions, we introduce this local model. An experiment on texture image classification is then conducted on the VisTex and Outex_TC000_13 databases to evaluate its potential.", 
    "editor": [
      {
        "familyName": "Nielsen", 
        "givenName": "Frank", 
        "type": "Person"
      }, 
      {
        "familyName": "Barbaresco", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-68445-1_85", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-68444-4", 
        "978-3-319-68445-1"
      ], 
      "name": "Geometric Science of Information", 
      "type": "Book"
    }, 
    "name": "Co-occurrence Matrix of Covariance Matrices: A Novel Coding Model for the Classification of Texture Images", 
    "pagination": "736-744", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-68445-1_85"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "06bb810ae19c37c61b80eb748e8da07e97301217baaaccc882ec9b195880bdfa"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092381071"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-68445-1_85", 
      "https://app.dimensions.ai/details/publication/pub.1092381071"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100788_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-68445-1_85"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_85'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_85'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_85'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_85'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      23 PREDICATES      47 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-68445-1_85 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nda6c286999404b97a4f22587d0d1f917
4 schema:citation sg:pub.10.1007/11744047_45
5 sg:pub.10.1007/978-3-319-25040-3_40
6 sg:pub.10.1007/978-3-540-75690-3_13
7 sg:pub.10.1007/978-3-642-15561-1_11
8 https://doi.org/10.1016/j.compmedimag.2010.09.001
9 https://doi.org/10.1016/j.neucom.2015.09.029
10 https://doi.org/10.1016/j.patcog.2011.12.021
11 https://doi.org/10.1016/j.patcog.2013.10.011
12 https://doi.org/10.1049/iet-cvi.2014.0018
13 https://doi.org/10.1080/014311698214262
14 https://doi.org/10.1109/adcom.2007.21
15 https://doi.org/10.1109/cvpr.2010.5540009
16 https://doi.org/10.1109/cvpr.2010.5540207
17 https://doi.org/10.1109/cvpr.2013.17
18 https://doi.org/10.1109/cvpr.2015.7299129
19 https://doi.org/10.1109/icip.2015.7351036
20 https://doi.org/10.1109/icip.2016.7533019
21 https://doi.org/10.1109/tgrs.2016.2526078
22 https://doi.org/10.1109/tit.2017.2653803
23 https://doi.org/10.1109/tmi.2016.2591921
24 https://doi.org/10.1137/1.9780898717778
25 schema:datePublished 2017-10-24
26 schema:datePublishedReg 2017-10-24
27 schema:description This paper introduces a novel local model for the classification of covariance matrices: the co-occurrence matrix of covariance matrices. Contrary to state-of-the-art models (BoRW, R-VLAD and RFV), this local model exploits the spatial distribution of the patches. Starting from the generative mixture model of Riemannian Gaussian distributions, we introduce this local model. An experiment on texture image classification is then conducted on the VisTex and Outex_TC000_13 databases to evaluate its potential.
28 schema:editor N37b1eb2993654f538f6c8328116c448c
29 schema:genre chapter
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N70565d9c149c484ba4dedf43e2b27f35
33 schema:name Co-occurrence Matrix of Covariance Matrices: A Novel Coding Model for the Classification of Texture Images
34 schema:pagination 736-744
35 schema:productId N199c6af908a64808a75bc4374b9b2d6f
36 N5ff371a877ec4c88b1d56977dead93e7
37 Nd9a6e83119a54a48b465ca9a076df0da
38 schema:publisher N41173dc6606b4cdc9919876d5ca60d53
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092381071
40 https://doi.org/10.1007/978-3-319-68445-1_85
41 schema:sdDatePublished 2019-04-16T05:00
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N327126d5ffa546dbb2087a4d1ac3552d
44 schema:url https://link.springer.com/10.1007%2F978-3-319-68445-1_85
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N199c6af908a64808a75bc4374b9b2d6f schema:name readcube_id
49 schema:value 06bb810ae19c37c61b80eb748e8da07e97301217baaaccc882ec9b195880bdfa
50 rdf:type schema:PropertyValue
51 N327126d5ffa546dbb2087a4d1ac3552d schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N37b1eb2993654f538f6c8328116c448c rdf:first Nee8c494b3bf1473ea60bd4ac6a9ffc07
54 rdf:rest N58056a10f41245f994ad3c6f444502aa
55 N41173dc6606b4cdc9919876d5ca60d53 schema:location Cham
56 schema:name Springer International Publishing
57 rdf:type schema:Organisation
58 N58056a10f41245f994ad3c6f444502aa rdf:first Nc2639931b83f4e8bb611a82d1783cdcb
59 rdf:rest rdf:nil
60 N5ff371a877ec4c88b1d56977dead93e7 schema:name doi
61 schema:value 10.1007/978-3-319-68445-1_85
62 rdf:type schema:PropertyValue
63 N70565d9c149c484ba4dedf43e2b27f35 schema:isbn 978-3-319-68444-4
64 978-3-319-68445-1
65 schema:name Geometric Science of Information
66 rdf:type schema:Book
67 N77a1dea6224f473ea2df45697975ce9c rdf:first sg:person.010636166221.26
68 rdf:rest rdf:nil
69 N8f08a99d88034f7683b001c181f3127c rdf:first sg:person.016161076243.21
70 rdf:rest N77a1dea6224f473ea2df45697975ce9c
71 Nc2639931b83f4e8bb611a82d1783cdcb schema:familyName Barbaresco
72 schema:givenName Frédéric
73 rdf:type schema:Person
74 Nd9a6e83119a54a48b465ca9a076df0da schema:name dimensions_id
75 schema:value pub.1092381071
76 rdf:type schema:PropertyValue
77 Nda6c286999404b97a4f22587d0d1f917 rdf:first sg:person.011753202006.82
78 rdf:rest Nfb9bd024b6b9436d994c6fedf77882ee
79 Nee8c494b3bf1473ea60bd4ac6a9ffc07 schema:familyName Nielsen
80 schema:givenName Frank
81 rdf:type schema:Person
82 Nfb9bd024b6b9436d994c6fedf77882ee rdf:first sg:person.010253405443.59
83 rdf:rest N8f08a99d88034f7683b001c181f3127c
84 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
85 schema:name Information and Computing Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
88 schema:name Artificial Intelligence and Image Processing
89 rdf:type schema:DefinedTerm
90 sg:person.010253405443.59 schema:affiliation https://www.grid.ac/institutes/grid.412041.2
91 schema:familyName Bombrun
92 schema:givenName Lionel
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253405443.59
94 rdf:type schema:Person
95 sg:person.010636166221.26 schema:affiliation https://www.grid.ac/institutes/grid.412041.2
96 schema:familyName Berthoumieu
97 schema:givenName Yannick
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636166221.26
99 rdf:type schema:Person
100 sg:person.011753202006.82 schema:affiliation https://www.grid.ac/institutes/grid.6827.b
101 schema:familyName Ilea
102 schema:givenName Ioana
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011753202006.82
104 rdf:type schema:Person
105 sg:person.016161076243.21 schema:affiliation https://www.grid.ac/institutes/grid.412041.2
106 schema:familyName Said
107 schema:givenName Salem
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016161076243.21
109 rdf:type schema:Person
110 sg:pub.10.1007/11744047_45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007677236
111 https://doi.org/10.1007/11744047_45
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/978-3-319-25040-3_40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030593140
114 https://doi.org/10.1007/978-3-319-25040-3_40
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/978-3-540-75690-3_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005415020
117 https://doi.org/10.1007/978-3-540-75690-3_13
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/978-3-642-15561-1_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045344996
120 https://doi.org/10.1007/978-3-642-15561-1_11
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.compmedimag.2010.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040693192
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.neucom.2015.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013429524
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.patcog.2011.12.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027198546
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.patcog.2013.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036730534
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1049/iet-cvi.2014.0018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056825338
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1080/014311698214262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006451530
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/adcom.2007.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093683707
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/cvpr.2010.5540009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095484171
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/cvpr.2010.5540207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093519327
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/cvpr.2013.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093758407
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/cvpr.2015.7299129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094109620
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/icip.2015.7351036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094420622
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/icip.2016.7533019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094060329
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tgrs.2016.2526078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061614248
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tit.2017.2653803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084206540
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/tmi.2016.2591921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696782
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1137/1.9780898717778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556566
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.412041.2 schema:alternateName University of Bordeaux
157 schema:name Laboratoire IMS, Groupe Signal et Image, Université de Bordeaux, Bordeaux, France
158 rdf:type schema:Organization
159 https://www.grid.ac/institutes/grid.6827.b schema:alternateName Technical University of Cluj-Napoca
160 schema:name Laboratoire IMS, Groupe Signal et Image, Université de Bordeaux, Bordeaux, France
161 Technical University of Cluj-Napoca, Cluj-Napoca, Romania
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...