Ontology type: schema:Chapter Open Access: True
2017-10-24
AUTHORSIoana Ilea , Lionel Bombrun , Salem Said , Yannick Berthoumieu
ABSTRACTThis paper introduces a novel local model for the classification of covariance matrices: the co-occurrence matrix of covariance matrices. Contrary to state-of-the-art models (BoRW, R-VLAD and RFV), this local model exploits the spatial distribution of the patches. Starting from the generative mixture model of Riemannian Gaussian distributions, we introduce this local model. An experiment on texture image classification is then conducted on the VisTex and Outex_TC000_13 databases to evaluate its potential. More... »
PAGES736-744
Geometric Science of Information
ISBN
978-3-319-68444-4
978-3-319-68445-1
http://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_85
DOIhttp://dx.doi.org/10.1007/978-3-319-68445-1_85
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1092381071
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Technical University of Cluj-Napoca",
"id": "https://www.grid.ac/institutes/grid.6827.b",
"name": [
"Laboratoire IMS, Groupe Signal et Image, Universit\u00e9 de Bordeaux, Bordeaux, France",
"Technical University of Cluj-Napoca, Cluj-Napoca, Romania"
],
"type": "Organization"
},
"familyName": "Ilea",
"givenName": "Ioana",
"id": "sg:person.011753202006.82",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011753202006.82"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Bordeaux",
"id": "https://www.grid.ac/institutes/grid.412041.2",
"name": [
"Laboratoire IMS, Groupe Signal et Image, Universit\u00e9 de Bordeaux, Bordeaux, France"
],
"type": "Organization"
},
"familyName": "Bombrun",
"givenName": "Lionel",
"id": "sg:person.010253405443.59",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253405443.59"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Bordeaux",
"id": "https://www.grid.ac/institutes/grid.412041.2",
"name": [
"Laboratoire IMS, Groupe Signal et Image, Universit\u00e9 de Bordeaux, Bordeaux, France"
],
"type": "Organization"
},
"familyName": "Said",
"givenName": "Salem",
"id": "sg:person.016161076243.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016161076243.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Bordeaux",
"id": "https://www.grid.ac/institutes/grid.412041.2",
"name": [
"Laboratoire IMS, Groupe Signal et Image, Universit\u00e9 de Bordeaux, Bordeaux, France"
],
"type": "Organization"
},
"familyName": "Berthoumieu",
"givenName": "Yannick",
"id": "sg:person.010636166221.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636166221.26"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-540-75690-3_13",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005415020",
"https://doi.org/10.1007/978-3-540-75690-3_13"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/014311698214262",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006451530"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11744047_45",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007677236",
"https://doi.org/10.1007/11744047_45"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11744047_45",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007677236",
"https://doi.org/10.1007/11744047_45"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2015.09.029",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013429524"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.patcog.2011.12.021",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027198546"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-25040-3_40",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030593140",
"https://doi.org/10.1007/978-3-319-25040-3_40"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.patcog.2013.10.011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036730534"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.compmedimag.2010.09.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040693192"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-15561-1_11",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045344996",
"https://doi.org/10.1007/978-3-642-15561-1_11"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-15561-1_11",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045344996",
"https://doi.org/10.1007/978-3-642-15561-1_11"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1049/iet-cvi.2014.0018",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056825338"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tgrs.2016.2526078",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061614248"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tmi.2016.2591921",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061696782"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tit.2017.2653803",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084206540"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2010.5540207",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093519327"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/adcom.2007.21",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093683707"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2013.17",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093758407"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2013.17",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093758407"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icip.2016.7533019",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094060329"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2015.7299129",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094109620"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icip.2015.7351036",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094420622"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2010.5540009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095484171"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/1.9780898717778",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098556566"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-10-24",
"datePublishedReg": "2017-10-24",
"description": "This paper introduces a novel local model for the classification of covariance matrices: the co-occurrence matrix of covariance matrices. Contrary to state-of-the-art models (BoRW, R-VLAD and RFV), this local model exploits the spatial distribution of the patches. Starting from the generative mixture model of Riemannian Gaussian distributions, we introduce this local model. An experiment on texture image classification is then conducted on the VisTex and Outex_TC000_13 databases to evaluate its potential.",
"editor": [
{
"familyName": "Nielsen",
"givenName": "Frank",
"type": "Person"
},
{
"familyName": "Barbaresco",
"givenName": "Fr\u00e9d\u00e9ric",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-68445-1_85",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-319-68444-4",
"978-3-319-68445-1"
],
"name": "Geometric Science of Information",
"type": "Book"
},
"name": "Co-occurrence Matrix of Covariance Matrices: A Novel Coding Model for the Classification of Texture Images",
"pagination": "736-744",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-68445-1_85"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"06bb810ae19c37c61b80eb748e8da07e97301217baaaccc882ec9b195880bdfa"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1092381071"
]
}
],
"publisher": {
"location": "Cham",
"name": "Springer International Publishing",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-68445-1_85",
"https://app.dimensions.ai/details/publication/pub.1092381071"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T05:00",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100788_00000000.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-319-68445-1_85"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_85'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_85'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_85'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_85'
This table displays all metadata directly associated to this object as RDF triples.
162 TRIPLES
23 PREDICATES
47 URIs
19 LITERALS
8 BLANK NODES