Ontology type: schema:Chapter Open Access: True
2017-10-24
AUTHORSSalem Said , Nicolas Le Bihan , Jonathan H. Manton
ABSTRACTRecently, Riemannian Gaussian distributions were defined on spaces of positive-definite real and complex matrices. The present paper extends this definition to the space of positive-definite quaternion matrices. In order to do so, it develops the Riemannian geometry of the space of positive-definite quaternion matrices, which is shown to be a Riemannian symmetric space of non-positive curvature. The paper gives original formulae for the Riemannian metric of this space, its geodesics, and distance function. Then, it develops the theory of Riemannian Gaussian distributions, including the exact expression of their probability density, their sampling algorithm and statistical inference. More... »
PAGES709-716
Geometric Science of Information
ISBN
978-3-319-68444-4
978-3-319-68445-1
http://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_82
DOIhttp://dx.doi.org/10.1007/978-3-319-68445-1_82
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1092381068
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"Laboratoire IMS (CNRS - UMR 5218), Paris, France"
],
"type": "Organization"
},
"familyName": "Said",
"givenName": "Salem",
"id": "sg:person.016161076243.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016161076243.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Grenoble Institute of Technology",
"id": "https://www.grid.ac/institutes/grid.5676.2",
"name": [
"Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab (UMR 5216), Grenoble, France"
],
"type": "Organization"
},
"familyName": "Le Bihan",
"givenName": "Nicolas",
"id": "sg:person.010632361556.58",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010632361556.58"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Melbourne",
"id": "https://www.grid.ac/institutes/grid.1008.9",
"name": [
"Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Australia"
],
"type": "Organization"
},
"familyName": "Manton",
"givenName": "Jonathan H.",
"id": "sg:person.0652547246.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652547246.52"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/0024-3795(95)00543-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016105230"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1024824538",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-4145-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024824538",
"https://doi.org/10.1007/978-1-4757-4145-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-4145-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024824538",
"https://doi.org/10.1007/978-1-4757-4145-2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.laa.2011.12.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045675793"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10851-006-6228-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049137733",
"https://doi.org/10.1007/s10851-006-6228-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10851-006-6228-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049137733",
"https://doi.org/10.1007/s10851-006-6228-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00211-014-0630-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049396432",
"https://doi.org/10.1007/s00211-014-0630-4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.sigpro.2017.03.017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084108421"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tit.2017.2653803",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084206540"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.acha.2017.05.007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085740700"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.acha.2017.05.007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085740700"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tit.2017.2713829",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085953112"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icarcv.2004.1469774",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093201378"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/sam.2016.7569687",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094675747"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/cbo9780511755156",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098581868"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-10-24",
"datePublishedReg": "2017-10-24",
"description": "Recently, Riemannian Gaussian distributions were defined on spaces of positive-definite real and complex matrices. The present paper extends this definition to the space of positive-definite quaternion matrices. In order to do so, it develops the Riemannian geometry of the space of positive-definite quaternion matrices, which is shown to be a Riemannian symmetric space of non-positive curvature. The paper gives original formulae for the Riemannian metric of this space, its geodesics, and distance function. Then, it develops the theory of Riemannian Gaussian distributions, including the exact expression of their probability density, their sampling algorithm and statistical inference.",
"editor": [
{
"familyName": "Nielsen",
"givenName": "Frank",
"type": "Person"
},
{
"familyName": "Barbaresco",
"givenName": "Fr\u00e9d\u00e9ric",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-68445-1_82",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-319-68444-4",
"978-3-319-68445-1"
],
"name": "Geometric Science of Information",
"type": "Book"
},
"name": "Riemannian Gaussian Distributions on the Space of Positive-Definite Quaternion Matrices",
"pagination": "709-716",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-68445-1_82"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"9afab0e04da2eac6831b68241c73d256080dbf27e0a1234f5ff271c61aa33452"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1092381068"
]
}
],
"publisher": {
"location": "Cham",
"name": "Springer International Publishing",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-68445-1_82",
"https://app.dimensions.ai/details/publication/pub.1092381068"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T04:59",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100782_00000000.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-319-68445-1_82"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_82'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_82'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_82'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_82'
This table displays all metadata directly associated to this object as RDF triples.
130 TRIPLES
23 PREDICATES
39 URIs
19 LITERALS
8 BLANK NODES