Maximum Likelihood Estimators on Manifolds View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-10-24

AUTHORS

Hatem Hajri , Salem Said , Yannick Berthoumieu

ABSTRACT

Maximum likelihood estimator (MLE) is a well known estimator in statistics. The popularity of this estimator stems from its asymptotic and universal properties. While asymptotic properties of MLEs on Euclidean spaces attracted a lot of interest, their studies on manifolds are still insufficient. The present paper aims to give a unified study of the subject. Its contributions are twofold. First it proposes a framework of asymptotic results for MLEs on manifolds: consistency, asymptotic normality and asymptotic efficiency. Second, it extends popular testing problems on manifolds. Some examples are discussed. More... »

PAGES

692-700

Book

TITLE

Geometric Science of Information

ISBN

978-3-319-68444-4
978-3-319-68445-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_80

DOI

http://dx.doi.org/10.1007/978-3-319-68445-1_80

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092381066


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institut Vedecom, 77 rue des Chantiers, Versailles, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hajri", 
        "givenName": "Hatem", 
        "id": "sg:person.013646552253.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013646552253.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "Laboratoire IMS (CNRS - UMR 5218), Universit\u00e9 de Bordeaux, Bordeaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Said", 
        "givenName": "Salem", 
        "id": "sg:person.016161076243.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016161076243.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "Laboratoire IMS (CNRS - UMR 5218), Universit\u00e9 de Bordeaux, Bordeaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berthoumieu", 
        "givenName": "Yannick", 
        "id": "sg:person.010636166221.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636166221.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-45087-0_38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010104312", 
          "https://doi.org/10.1007/978-3-540-45087-0_38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-45087-0_38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010104312", 
          "https://doi.org/10.1007/978-3-540-45087-0_38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022025812", 
          "https://doi.org/10.1007/b98823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022025812", 
          "https://doi.org/10.1007/b98823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/blms/16.2.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038472811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/e18030098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046643504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21540-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048090418", 
          "https://doi.org/10.1007/978-0-387-21540-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21540-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048090418", 
          "https://doi.org/10.1007/978-0-387-21540-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-2010-10541-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059332926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2012.2195809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061478384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2011.52", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2013.170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2005.845428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061799523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1046294456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2017.2653803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084206540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2017.2713829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085953112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2008.4587733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093696163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2004.1333732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094223624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sam.2016.7569687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094675747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2017.7952574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095991269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2017.7952574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095991269"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10-24", 
    "datePublishedReg": "2017-10-24", 
    "description": "Maximum likelihood estimator (MLE) is a well known estimator in statistics. The popularity of this estimator stems from its asymptotic and universal properties. While asymptotic properties of MLEs on Euclidean spaces attracted a lot of interest, their studies on manifolds are still insufficient. The present paper aims to give a unified study of the subject. Its contributions are twofold. First it proposes a framework of asymptotic results for MLEs on manifolds: consistency, asymptotic normality and asymptotic efficiency. Second, it extends popular testing problems on manifolds. Some examples are discussed.", 
    "editor": [
      {
        "familyName": "Nielsen", 
        "givenName": "Frank", 
        "type": "Person"
      }, 
      {
        "familyName": "Barbaresco", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-68445-1_80", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-68444-4", 
        "978-3-319-68445-1"
      ], 
      "name": "Geometric Science of Information", 
      "type": "Book"
    }, 
    "name": "Maximum Likelihood Estimators on Manifolds", 
    "pagination": "692-700", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-68445-1_80"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bfa6f24a155b71fbb37d9fb67f1ea99588c65379b94a8b93af612721b5a8d807"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092381066"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-68445-1_80", 
      "https://app.dimensions.ai/details/publication/pub.1092381066"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100778_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-68445-1_80"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_80'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_80'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_80'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68445-1_80'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      23 PREDICATES      43 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-68445-1_80 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nac68e5596dd04b3d84b21e0da6c096ef
4 schema:citation sg:pub.10.1007/978-0-387-21540-2
5 sg:pub.10.1007/978-3-540-45087-0_38
6 sg:pub.10.1007/b98823
7 https://doi.org/10.1090/s0002-9939-2010-10541-5
8 https://doi.org/10.1109/cvpr.2008.4587733
9 https://doi.org/10.1109/icassp.2017.7952574
10 https://doi.org/10.1109/icpr.2004.1333732
11 https://doi.org/10.1109/sam.2016.7569687
12 https://doi.org/10.1109/tac.2012.2195809
13 https://doi.org/10.1109/tit.2017.2653803
14 https://doi.org/10.1109/tit.2017.2713829
15 https://doi.org/10.1109/tpami.2011.52
16 https://doi.org/10.1109/tpami.2013.170
17 https://doi.org/10.1109/tsp.2005.845428
18 https://doi.org/10.1112/blms/16.2.81
19 https://doi.org/10.1214/aos/1046294456
20 https://doi.org/10.3390/e18030098
21 schema:datePublished 2017-10-24
22 schema:datePublishedReg 2017-10-24
23 schema:description Maximum likelihood estimator (MLE) is a well known estimator in statistics. The popularity of this estimator stems from its asymptotic and universal properties. While asymptotic properties of MLEs on Euclidean spaces attracted a lot of interest, their studies on manifolds are still insufficient. The present paper aims to give a unified study of the subject. Its contributions are twofold. First it proposes a framework of asymptotic results for MLEs on manifolds: consistency, asymptotic normality and asymptotic efficiency. Second, it extends popular testing problems on manifolds. Some examples are discussed.
24 schema:editor Na0ff54e7a2b543fdb34dbe00acff09f3
25 schema:genre chapter
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N4ea19c2101b54da7a7bbc10a573178b2
29 schema:name Maximum Likelihood Estimators on Manifolds
30 schema:pagination 692-700
31 schema:productId N8db6a8f15cd94ac5a6bac1cdbae10cab
32 Nb02889aeaed74c2a839f7cb45705437c
33 Ncdf70d82e77e4e40bfd60a847ead2501
34 schema:publisher N1825f4870e4448a0a62ae1ec60b4c955
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092381066
36 https://doi.org/10.1007/978-3-319-68445-1_80
37 schema:sdDatePublished 2019-04-16T04:59
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nd83c34571131464eb8c09e5bc97e3723
40 schema:url https://link.springer.com/10.1007%2F978-3-319-68445-1_80
41 sgo:license sg:explorer/license/
42 sgo:sdDataset chapters
43 rdf:type schema:Chapter
44 N16fbff5cd0b34f8cae4b591b6bdc46de rdf:first sg:person.010636166221.26
45 rdf:rest rdf:nil
46 N1825f4870e4448a0a62ae1ec60b4c955 schema:location Cham
47 schema:name Springer International Publishing
48 rdf:type schema:Organisation
49 N356a471c9c1d48b2a3d4000a6ec53998 schema:familyName Nielsen
50 schema:givenName Frank
51 rdf:type schema:Person
52 N4ea19c2101b54da7a7bbc10a573178b2 schema:isbn 978-3-319-68444-4
53 978-3-319-68445-1
54 schema:name Geometric Science of Information
55 rdf:type schema:Book
56 N6a22d3f0fc19499fa3df13549cf01d99 schema:familyName Barbaresco
57 schema:givenName Frédéric
58 rdf:type schema:Person
59 N8db6a8f15cd94ac5a6bac1cdbae10cab schema:name readcube_id
60 schema:value bfa6f24a155b71fbb37d9fb67f1ea99588c65379b94a8b93af612721b5a8d807
61 rdf:type schema:PropertyValue
62 Na0ff54e7a2b543fdb34dbe00acff09f3 rdf:first N356a471c9c1d48b2a3d4000a6ec53998
63 rdf:rest Nc27ab1ea46204427bcabc0c9501085c1
64 Nac68e5596dd04b3d84b21e0da6c096ef rdf:first sg:person.013646552253.88
65 rdf:rest Nd7194f139916460ba930b8ba3f2ce351
66 Nb02889aeaed74c2a839f7cb45705437c schema:name dimensions_id
67 schema:value pub.1092381066
68 rdf:type schema:PropertyValue
69 Nc27ab1ea46204427bcabc0c9501085c1 rdf:first N6a22d3f0fc19499fa3df13549cf01d99
70 rdf:rest rdf:nil
71 Ncdf70d82e77e4e40bfd60a847ead2501 schema:name doi
72 schema:value 10.1007/978-3-319-68445-1_80
73 rdf:type schema:PropertyValue
74 Nd7194f139916460ba930b8ba3f2ce351 rdf:first sg:person.016161076243.21
75 rdf:rest N16fbff5cd0b34f8cae4b591b6bdc46de
76 Nd83c34571131464eb8c09e5bc97e3723 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Neb71fba0746b4239a92c646d200ff354 schema:name Institut Vedecom, 77 rue des Chantiers, Versailles, France
79 rdf:type schema:Organization
80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
81 schema:name Mathematical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
84 schema:name Pure Mathematics
85 rdf:type schema:DefinedTerm
86 sg:person.010636166221.26 schema:affiliation https://www.grid.ac/institutes/grid.412041.2
87 schema:familyName Berthoumieu
88 schema:givenName Yannick
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636166221.26
90 rdf:type schema:Person
91 sg:person.013646552253.88 schema:affiliation Neb71fba0746b4239a92c646d200ff354
92 schema:familyName Hajri
93 schema:givenName Hatem
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013646552253.88
95 rdf:type schema:Person
96 sg:person.016161076243.21 schema:affiliation https://www.grid.ac/institutes/grid.412041.2
97 schema:familyName Said
98 schema:givenName Salem
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016161076243.21
100 rdf:type schema:Person
101 sg:pub.10.1007/978-0-387-21540-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048090418
102 https://doi.org/10.1007/978-0-387-21540-2
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/978-3-540-45087-0_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010104312
105 https://doi.org/10.1007/978-3-540-45087-0_38
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/b98823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022025812
108 https://doi.org/10.1007/b98823
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1090/s0002-9939-2010-10541-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059332926
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/cvpr.2008.4587733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093696163
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/icassp.2017.7952574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095991269
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/icpr.2004.1333732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094223624
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/sam.2016.7569687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094675747
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/tac.2012.2195809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061478384
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/tit.2017.2653803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084206540
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/tit.2017.2713829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085953112
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/tpami.2011.52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744190
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/tpami.2013.170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744481
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/tsp.2005.845428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061799523
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1112/blms/16.2.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038472811
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1214/aos/1046294456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406400
135 rdf:type schema:CreativeWork
136 https://doi.org/10.3390/e18030098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046643504
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.412041.2 schema:alternateName University of Bordeaux
139 schema:name Laboratoire IMS (CNRS - UMR 5218), Université de Bordeaux, Bordeaux, France
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...