An Efficient Method to Find a Triangle with the Least Sum of Distances from Its Vertices to the Covered Point View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-10-11

AUTHORS

Guoyi Chi , KengLiang Loi , Pongsak Lasang

ABSTRACT

Depth sensors are used to acquire a scene from various viewpoints, with the resultant depth images integrated into a 3d model. Generally, due to surface reflectance properties, absorptions, occlusions and accessibility limitations, certain areas of scenes are not sampled, leading to holes and introducing undesirable artifacts. An efficient algorithm for filling holes on organized depth images is high significance. Points far away from a covered point, are usually low probability in the aspect of spatial information, due to contamination of outliers and distortion. The paper shows an algorithm to find a triangle whose vertices are nearest to the covered point. More... »

PAGES

626-639

Book

TITLE

Computer Vision Systems

ISBN

978-3-319-68344-7
978-3-319-68345-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-68345-4_55

DOI

http://dx.doi.org/10.1007/978-3-319-68345-4_55

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092140768


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Panasonic R&D Center Singapore, 469332, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chi", 
        "givenName": "Guoyi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Panasonic R&D Center Singapore, 469332, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Loi", 
        "givenName": "KengLiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Panasonic R&D Center Singapore, 469332, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lasang", 
        "givenName": "Pongsak", 
        "id": "sg:person.01324226204.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324226204.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/tce.2011.6018896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061547273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icspcc.2012.6335696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093490540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2011.6116194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093847024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sibgra.2003.1240986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094769560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2013.6738448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094854211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isocc.2012.6407114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095261426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2014.474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095559620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2008.4712288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095586088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2014.433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095698751"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10-11", 
    "datePublishedReg": "2017-10-11", 
    "description": "Depth sensors are used to acquire a scene from various viewpoints, with the resultant depth images integrated into a 3d model. Generally, due to surface reflectance properties, absorptions, occlusions and accessibility limitations, certain areas of scenes are not sampled, leading to holes and introducing undesirable artifacts. An efficient algorithm for filling holes on organized depth images is high significance. Points far away from a covered point, are usually low probability in the aspect of spatial information, due to contamination of outliers and distortion. The paper shows an algorithm to find a triangle whose vertices are nearest to the covered point.", 
    "editor": [
      {
        "familyName": "Liu", 
        "givenName": "Ming", 
        "type": "Person"
      }, 
      {
        "familyName": "Chen", 
        "givenName": "Haoyao", 
        "type": "Person"
      }, 
      {
        "familyName": "Vincze", 
        "givenName": "Markus", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-68345-4_55", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-68344-7", 
        "978-3-319-68345-4"
      ], 
      "name": "Computer Vision Systems", 
      "type": "Book"
    }, 
    "name": "An Efficient Method to Find a Triangle with the Least Sum of Distances from Its Vertices to the Covered Point", 
    "pagination": "626-639", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-68345-4_55"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e2fb49d9ca98ac740659f5f1e64b7e022d2e7daef4bf78d41bd87861c86c2b74"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092140768"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-68345-4_55", 
      "https://app.dimensions.ai/details/publication/pub.1092140768"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100782_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-68345-4_55"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68345-4_55'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68345-4_55'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68345-4_55'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68345-4_55'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      23 PREDICATES      35 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-68345-4_55 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N25e0286665594907b8b96164ffa335ee
4 schema:citation https://doi.org/10.1109/cvpr.2014.433
5 https://doi.org/10.1109/icip.2008.4712288
6 https://doi.org/10.1109/icip.2011.6116194
7 https://doi.org/10.1109/icip.2013.6738448
8 https://doi.org/10.1109/icpr.2014.474
9 https://doi.org/10.1109/icspcc.2012.6335696
10 https://doi.org/10.1109/isocc.2012.6407114
11 https://doi.org/10.1109/sibgra.2003.1240986
12 https://doi.org/10.1109/tce.2011.6018896
13 schema:datePublished 2017-10-11
14 schema:datePublishedReg 2017-10-11
15 schema:description Depth sensors are used to acquire a scene from various viewpoints, with the resultant depth images integrated into a 3d model. Generally, due to surface reflectance properties, absorptions, occlusions and accessibility limitations, certain areas of scenes are not sampled, leading to holes and introducing undesirable artifacts. An efficient algorithm for filling holes on organized depth images is high significance. Points far away from a covered point, are usually low probability in the aspect of spatial information, due to contamination of outliers and distortion. The paper shows an algorithm to find a triangle whose vertices are nearest to the covered point.
16 schema:editor Na418c66979e84e1a843441fa69d449a3
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N2735100ceb6b44cfa6b05a58dee91f40
21 schema:name An Efficient Method to Find a Triangle with the Least Sum of Distances from Its Vertices to the Covered Point
22 schema:pagination 626-639
23 schema:productId N32d2d0aaf3704b0c990115d0a559cd5a
24 N5cc280c5771b4d66a7d8267a4bdc582d
25 Nf80b31dc33dd48868373ae8ac12697dc
26 schema:publisher N8b7a3922d4b144e5ba4c2dd184aa68a9
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092140768
28 https://doi.org/10.1007/978-3-319-68345-4_55
29 schema:sdDatePublished 2019-04-16T04:59
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Nf1963f9fbf9848d695e525d4741fe124
32 schema:url https://link.springer.com/10.1007%2F978-3-319-68345-4_55
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N0b9b677f285a4ee8abd02b18d4e30d7f rdf:first N0d6b32a0848e4e52a8b50e123977afd3
37 rdf:rest rdf:nil
38 N0d6b32a0848e4e52a8b50e123977afd3 schema:familyName Vincze
39 schema:givenName Markus
40 rdf:type schema:Person
41 N110a5abf65f048cd8c33feb46b608c7f schema:affiliation Nc9e411bc9d20412bae76ebd82f49f3d2
42 schema:familyName Chi
43 schema:givenName Guoyi
44 rdf:type schema:Person
45 N14f6ecb266204edba85361c3a288a899 schema:name Panasonic R&D Center Singapore, 469332, Singapore, Singapore
46 rdf:type schema:Organization
47 N176e95a24cca44199dec2de370659f21 schema:affiliation Nc90657b2ec7b434fb12232737e21d830
48 schema:familyName Loi
49 schema:givenName KengLiang
50 rdf:type schema:Person
51 N25e0286665594907b8b96164ffa335ee rdf:first N110a5abf65f048cd8c33feb46b608c7f
52 rdf:rest N7060704933994424b799af60393038e8
53 N2735100ceb6b44cfa6b05a58dee91f40 schema:isbn 978-3-319-68344-7
54 978-3-319-68345-4
55 schema:name Computer Vision Systems
56 rdf:type schema:Book
57 N32d2d0aaf3704b0c990115d0a559cd5a schema:name dimensions_id
58 schema:value pub.1092140768
59 rdf:type schema:PropertyValue
60 N43f73ad136e848e8adb0d195e33c4e44 rdf:first sg:person.01324226204.06
61 rdf:rest rdf:nil
62 N5cc280c5771b4d66a7d8267a4bdc582d schema:name readcube_id
63 schema:value e2fb49d9ca98ac740659f5f1e64b7e022d2e7daef4bf78d41bd87861c86c2b74
64 rdf:type schema:PropertyValue
65 N7060704933994424b799af60393038e8 rdf:first N176e95a24cca44199dec2de370659f21
66 rdf:rest N43f73ad136e848e8adb0d195e33c4e44
67 N7c7ad1033a4c4d7b8dfae0797f95e907 schema:familyName Liu
68 schema:givenName Ming
69 rdf:type schema:Person
70 N80829234c66d496dbc33dbdebf073b1f rdf:first Nbf1f154428944b0d98c0ccfd269106e1
71 rdf:rest N0b9b677f285a4ee8abd02b18d4e30d7f
72 N8b7a3922d4b144e5ba4c2dd184aa68a9 schema:location Cham
73 schema:name Springer International Publishing
74 rdf:type schema:Organisation
75 Na418c66979e84e1a843441fa69d449a3 rdf:first N7c7ad1033a4c4d7b8dfae0797f95e907
76 rdf:rest N80829234c66d496dbc33dbdebf073b1f
77 Nbf1f154428944b0d98c0ccfd269106e1 schema:familyName Chen
78 schema:givenName Haoyao
79 rdf:type schema:Person
80 Nc90657b2ec7b434fb12232737e21d830 schema:name Panasonic R&D Center Singapore, 469332, Singapore, Singapore
81 rdf:type schema:Organization
82 Nc9e411bc9d20412bae76ebd82f49f3d2 schema:name Panasonic R&D Center Singapore, 469332, Singapore, Singapore
83 rdf:type schema:Organization
84 Nf1963f9fbf9848d695e525d4741fe124 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nf80b31dc33dd48868373ae8ac12697dc schema:name doi
87 schema:value 10.1007/978-3-319-68345-4_55
88 rdf:type schema:PropertyValue
89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
90 schema:name Information and Computing Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
93 schema:name Artificial Intelligence and Image Processing
94 rdf:type schema:DefinedTerm
95 sg:person.01324226204.06 schema:affiliation N14f6ecb266204edba85361c3a288a899
96 schema:familyName Lasang
97 schema:givenName Pongsak
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324226204.06
99 rdf:type schema:Person
100 https://doi.org/10.1109/cvpr.2014.433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095698751
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1109/icip.2008.4712288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095586088
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1109/icip.2011.6116194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093847024
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1109/icip.2013.6738448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094854211
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/icpr.2014.474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095559620
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/icspcc.2012.6335696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093490540
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/isocc.2012.6407114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095261426
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/sibgra.2003.1240986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094769560
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/tce.2011.6018896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061547273
117 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...