A Deep Learning Based Named Entity Recognition Approach for Adverse Drug Events Identification and Extraction in Health Social Media View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

Long Xia , G. Alan Wang , Weiguo Fan

ABSTRACT

Drug safety surveillance plays a significant role in supporting medication decision-making by both healthcare providers and patients. Extracting adverse drug events (ADEs) from social media provides a promising direction to addressing this challenging task. Prior studies typically perform lexicon-based extraction using existing dictionaries or medical lexicons. While those approaches can capture ADEs and identify risky drugs from patient social media postings, they often fail to detect those ADEs whose descriptive words do not exist in medical lexicons and dictionaries. In addition, their performance is inferior when ADE related social media content is expressed in an ambiguous manner. In this research, we propose a research framework using advanced natural language processing and deep learning for high-performance ADE extraction. The framework consists of training the word embeddings using a large medical domain corpus to capture precise semantic and syntactic word relationships, and a deep learning based named entity recognition method for drug and ADE entity identification and prediction. Experimental results show that our framework significantly outperforms existing models when extracting ADEs from social media in different test beds. More... »

PAGES

237-248

References to SciGraph publications

Book

TITLE

Smart Health

ISBN

978-3-319-67963-1
978-3-319-67964-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-67964-8_23

DOI

http://dx.doi.org/10.1007/978-3-319-67964-8_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092406207


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Pamplin College of Business, Virginia Tech"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Long", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Pamplin College of Business, Virginia Tech"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "G. Alan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Pamplin College of Business, Virginia Tech"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Weiguo", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1162/089976600300015015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007880308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmp0911494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008064319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.drudis.2008.12.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010847388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2389707.2389713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011372302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pds.1742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015083994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pds.1742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015083994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2015.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022120579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/clpt.2012.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024345853", 
          "https://doi.org/10.1038/clpt.2012.50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2011.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038812756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/isre.1120.0466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064711616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3414/me12-02-0004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071312197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnn.1996.548916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093652537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2013.6638947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095157363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2139/ssrn.1984973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102330248"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "Drug safety surveillance plays a significant role in supporting medication decision-making by both healthcare providers and patients. Extracting adverse drug events (ADEs) from social media provides a promising direction to addressing this challenging task. Prior studies typically perform lexicon-based extraction using existing dictionaries or medical lexicons. While those approaches can capture ADEs and identify risky drugs from patient social media postings, they often fail to detect those ADEs whose descriptive words do not exist in medical lexicons and dictionaries. In addition, their performance is inferior when ADE related social media content is expressed in an ambiguous manner. In this research, we propose a research framework using advanced natural language processing and deep learning for high-performance ADE extraction. The framework consists of training the word embeddings using a large medical domain corpus to capture precise semantic and syntactic word relationships, and a deep learning based named entity recognition method for drug and ADE entity identification and prediction. Experimental results show that our framework significantly outperforms existing models when extracting ADEs from social media in different test beds.", 
    "editor": [
      {
        "familyName": "Chen", 
        "givenName": "Hsinchun", 
        "type": "Person"
      }, 
      {
        "familyName": "Zeng", 
        "givenName": "Daniel Dajun", 
        "type": "Person"
      }, 
      {
        "familyName": "Karahanna", 
        "givenName": "Elena", 
        "type": "Person"
      }, 
      {
        "familyName": "Bardhan", 
        "givenName": "Indranil", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-67964-8_23", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-67963-1", 
        "978-3-319-67964-8"
      ], 
      "name": "Smart Health", 
      "type": "Book"
    }, 
    "name": "A Deep Learning Based Named Entity Recognition Approach for Adverse Drug Events Identification and Extraction in Health Social Media", 
    "pagination": "237-248", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-67964-8_23"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "88ffe89524130336a51bc6313b022d314375bdea70f2b89d04b1e57c11e08cda"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092406207"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-67964-8_23", 
      "https://app.dimensions.ai/details/publication/pub.1092406207"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000601.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-67964-8_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67964-8_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67964-8_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67964-8_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67964-8_23'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-67964-8_23 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd0cee5c29a5d45d79c60913c0e934b6f
4 schema:citation sg:pub.10.1038/clpt.2012.50
5 https://doi.org/10.1002/pds.1742
6 https://doi.org/10.1016/j.drudis.2008.12.012
7 https://doi.org/10.1016/j.jbi.2011.07.005
8 https://doi.org/10.1016/j.jbi.2015.10.011
9 https://doi.org/10.1056/nejmp0911494
10 https://doi.org/10.1109/icassp.2013.6638947
11 https://doi.org/10.1109/icnn.1996.548916
12 https://doi.org/10.1145/2389707.2389713
13 https://doi.org/10.1162/089976600300015015
14 https://doi.org/10.1287/isre.1120.0466
15 https://doi.org/10.2139/ssrn.1984973
16 https://doi.org/10.3414/me12-02-0004
17 schema:datePublished 2017
18 schema:datePublishedReg 2017-01-01
19 schema:description Drug safety surveillance plays a significant role in supporting medication decision-making by both healthcare providers and patients. Extracting adverse drug events (ADEs) from social media provides a promising direction to addressing this challenging task. Prior studies typically perform lexicon-based extraction using existing dictionaries or medical lexicons. While those approaches can capture ADEs and identify risky drugs from patient social media postings, they often fail to detect those ADEs whose descriptive words do not exist in medical lexicons and dictionaries. In addition, their performance is inferior when ADE related social media content is expressed in an ambiguous manner. In this research, we propose a research framework using advanced natural language processing and deep learning for high-performance ADE extraction. The framework consists of training the word embeddings using a large medical domain corpus to capture precise semantic and syntactic word relationships, and a deep learning based named entity recognition method for drug and ADE entity identification and prediction. Experimental results show that our framework significantly outperforms existing models when extracting ADEs from social media in different test beds.
20 schema:editor Ne3b3f1961c3c4d6489dc365239d234b4
21 schema:genre chapter
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf Nd0cbe2a6857f4353a5462c7a5092cd32
25 schema:name A Deep Learning Based Named Entity Recognition Approach for Adverse Drug Events Identification and Extraction in Health Social Media
26 schema:pagination 237-248
27 schema:productId N2ec28c5296cb480aac97eba10ec4f8d7
28 N6fc1806d00574b23ade987f102df86dd
29 Nce8134b4a2a14a2dba2753f85254b629
30 schema:publisher N62b83fe29e0248b4b6d615f30fa9face
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092406207
32 https://doi.org/10.1007/978-3-319-67964-8_23
33 schema:sdDatePublished 2019-04-15T15:03
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N8b7122543d674eab8fbaaa51f3c50d69
36 schema:url http://link.springer.com/10.1007/978-3-319-67964-8_23
37 sgo:license sg:explorer/license/
38 sgo:sdDataset chapters
39 rdf:type schema:Chapter
40 N0e3bcdb8d57d4fae82565d6e1c66cdae rdf:first Nd5474409c7034aeaa25d430c7ba695ce
41 rdf:rest N706b5e25cc084367924e1c514595a0fe
42 N134c6702a27749d8b224b8e80e88af96 schema:name Pamplin College of Business, Virginia Tech
43 rdf:type schema:Organization
44 N13c01ff009ca4afdb3d5b5d6a2a91026 schema:familyName Karahanna
45 schema:givenName Elena
46 rdf:type schema:Person
47 N25f4e53d7ec54157887e387bbd56d3c9 schema:name Pamplin College of Business, Virginia Tech
48 rdf:type schema:Organization
49 N2ec28c5296cb480aac97eba10ec4f8d7 schema:name doi
50 schema:value 10.1007/978-3-319-67964-8_23
51 rdf:type schema:PropertyValue
52 N3438b4827db24cca9a69ef6c97aec6cd schema:affiliation N25f4e53d7ec54157887e387bbd56d3c9
53 schema:familyName Fan
54 schema:givenName Weiguo
55 rdf:type schema:Person
56 N45d436bef5b34b3f93663097ea0c0e93 rdf:first N3438b4827db24cca9a69ef6c97aec6cd
57 rdf:rest rdf:nil
58 N4e218173028c4ec6877a3ff576d8cf63 schema:affiliation N134c6702a27749d8b224b8e80e88af96
59 schema:familyName Wang
60 schema:givenName G. Alan
61 rdf:type schema:Person
62 N62b83fe29e0248b4b6d615f30fa9face schema:location Cham
63 schema:name Springer International Publishing
64 rdf:type schema:Organisation
65 N6fc1806d00574b23ade987f102df86dd schema:name readcube_id
66 schema:value 88ffe89524130336a51bc6313b022d314375bdea70f2b89d04b1e57c11e08cda
67 rdf:type schema:PropertyValue
68 N706b5e25cc084367924e1c514595a0fe rdf:first N13c01ff009ca4afdb3d5b5d6a2a91026
69 rdf:rest Nd70378d2fc80425c86858b43eb0b5d0a
70 N8b7122543d674eab8fbaaa51f3c50d69 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Nb4fd35228f914bf4bad1099320d1147a schema:familyName Chen
73 schema:givenName Hsinchun
74 rdf:type schema:Person
75 Nb59978f8a94741d78e5f1c4a4c8cc0ce schema:familyName Bardhan
76 schema:givenName Indranil
77 rdf:type schema:Person
78 Nb70ee9b98299406ab57921d055e6b48f rdf:first N4e218173028c4ec6877a3ff576d8cf63
79 rdf:rest N45d436bef5b34b3f93663097ea0c0e93
80 Nbb7b23f88ddd4c1c9ec5ee7fd7bdc64e schema:affiliation Nd2ef320d0174481d826a9a929b3e8024
81 schema:familyName Xia
82 schema:givenName Long
83 rdf:type schema:Person
84 Nce8134b4a2a14a2dba2753f85254b629 schema:name dimensions_id
85 schema:value pub.1092406207
86 rdf:type schema:PropertyValue
87 Nd0cbe2a6857f4353a5462c7a5092cd32 schema:isbn 978-3-319-67963-1
88 978-3-319-67964-8
89 schema:name Smart Health
90 rdf:type schema:Book
91 Nd0cee5c29a5d45d79c60913c0e934b6f rdf:first Nbb7b23f88ddd4c1c9ec5ee7fd7bdc64e
92 rdf:rest Nb70ee9b98299406ab57921d055e6b48f
93 Nd2ef320d0174481d826a9a929b3e8024 schema:name Pamplin College of Business, Virginia Tech
94 rdf:type schema:Organization
95 Nd5474409c7034aeaa25d430c7ba695ce schema:familyName Zeng
96 schema:givenName Daniel Dajun
97 rdf:type schema:Person
98 Nd70378d2fc80425c86858b43eb0b5d0a rdf:first Nb59978f8a94741d78e5f1c4a4c8cc0ce
99 rdf:rest rdf:nil
100 Ne3b3f1961c3c4d6489dc365239d234b4 rdf:first Nb4fd35228f914bf4bad1099320d1147a
101 rdf:rest N0e3bcdb8d57d4fae82565d6e1c66cdae
102 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
103 schema:name Information and Computing Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
106 schema:name Artificial Intelligence and Image Processing
107 rdf:type schema:DefinedTerm
108 sg:pub.10.1038/clpt.2012.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024345853
109 https://doi.org/10.1038/clpt.2012.50
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1002/pds.1742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015083994
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.drudis.2008.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010847388
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.jbi.2011.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038812756
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.jbi.2015.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022120579
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1056/nejmp0911494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008064319
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/icassp.2013.6638947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095157363
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/icnn.1996.548916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093652537
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1145/2389707.2389713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011372302
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1162/089976600300015015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007880308
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1287/isre.1120.0466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064711616
130 rdf:type schema:CreativeWork
131 https://doi.org/10.2139/ssrn.1984973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102330248
132 rdf:type schema:CreativeWork
133 https://doi.org/10.3414/me12-02-0004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071312197
134 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...