A Deep Learning Based Named Entity Recognition Approach for Adverse Drug Events Identification and Extraction in Health Social Media View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

Long Xia , G. Alan Wang , Weiguo Fan

ABSTRACT

Drug safety surveillance plays a significant role in supporting medication decision-making by both healthcare providers and patients. Extracting adverse drug events (ADEs) from social media provides a promising direction to addressing this challenging task. Prior studies typically perform lexicon-based extraction using existing dictionaries or medical lexicons. While those approaches can capture ADEs and identify risky drugs from patient social media postings, they often fail to detect those ADEs whose descriptive words do not exist in medical lexicons and dictionaries. In addition, their performance is inferior when ADE related social media content is expressed in an ambiguous manner. In this research, we propose a research framework using advanced natural language processing and deep learning for high-performance ADE extraction. The framework consists of training the word embeddings using a large medical domain corpus to capture precise semantic and syntactic word relationships, and a deep learning based named entity recognition method for drug and ADE entity identification and prediction. Experimental results show that our framework significantly outperforms existing models when extracting ADEs from social media in different test beds. More... »

PAGES

237-248

References to SciGraph publications

Book

TITLE

Smart Health

ISBN

978-3-319-67963-1
978-3-319-67964-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-67964-8_23

DOI

http://dx.doi.org/10.1007/978-3-319-67964-8_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092406207


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Pamplin College of Business, Virginia Tech"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Long", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Pamplin College of Business, Virginia Tech"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "G. Alan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Pamplin College of Business, Virginia Tech"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Weiguo", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1162/089976600300015015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007880308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmp0911494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008064319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.drudis.2008.12.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010847388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2389707.2389713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011372302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pds.1742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015083994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pds.1742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015083994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2015.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022120579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/clpt.2012.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024345853", 
          "https://doi.org/10.1038/clpt.2012.50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2011.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038812756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/isre.1120.0466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064711616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3414/me12-02-0004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071312197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnn.1996.548916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093652537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2013.6638947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095157363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2139/ssrn.1984973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102330248"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "Drug safety surveillance plays a significant role in supporting medication decision-making by both healthcare providers and patients. Extracting adverse drug events (ADEs) from social media provides a promising direction to addressing this challenging task. Prior studies typically perform lexicon-based extraction using existing dictionaries or medical lexicons. While those approaches can capture ADEs and identify risky drugs from patient social media postings, they often fail to detect those ADEs whose descriptive words do not exist in medical lexicons and dictionaries. In addition, their performance is inferior when ADE related social media content is expressed in an ambiguous manner. In this research, we propose a research framework using advanced natural language processing and deep learning for high-performance ADE extraction. The framework consists of training the word embeddings using a large medical domain corpus to capture precise semantic and syntactic word relationships, and a deep learning based named entity recognition method for drug and ADE entity identification and prediction. Experimental results show that our framework significantly outperforms existing models when extracting ADEs from social media in different test beds.", 
    "editor": [
      {
        "familyName": "Chen", 
        "givenName": "Hsinchun", 
        "type": "Person"
      }, 
      {
        "familyName": "Zeng", 
        "givenName": "Daniel Dajun", 
        "type": "Person"
      }, 
      {
        "familyName": "Karahanna", 
        "givenName": "Elena", 
        "type": "Person"
      }, 
      {
        "familyName": "Bardhan", 
        "givenName": "Indranil", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-67964-8_23", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-67963-1", 
        "978-3-319-67964-8"
      ], 
      "name": "Smart Health", 
      "type": "Book"
    }, 
    "name": "A Deep Learning Based Named Entity Recognition Approach for Adverse Drug Events Identification and Extraction in Health Social Media", 
    "pagination": "237-248", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-67964-8_23"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "88ffe89524130336a51bc6313b022d314375bdea70f2b89d04b1e57c11e08cda"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092406207"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-67964-8_23", 
      "https://app.dimensions.ai/details/publication/pub.1092406207"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000601.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-67964-8_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67964-8_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67964-8_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67964-8_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67964-8_23'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-67964-8_23 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N57d59bd4dada4d1e9cfd16fc63c0f72b
4 schema:citation sg:pub.10.1038/clpt.2012.50
5 https://doi.org/10.1002/pds.1742
6 https://doi.org/10.1016/j.drudis.2008.12.012
7 https://doi.org/10.1016/j.jbi.2011.07.005
8 https://doi.org/10.1016/j.jbi.2015.10.011
9 https://doi.org/10.1056/nejmp0911494
10 https://doi.org/10.1109/icassp.2013.6638947
11 https://doi.org/10.1109/icnn.1996.548916
12 https://doi.org/10.1145/2389707.2389713
13 https://doi.org/10.1162/089976600300015015
14 https://doi.org/10.1287/isre.1120.0466
15 https://doi.org/10.2139/ssrn.1984973
16 https://doi.org/10.3414/me12-02-0004
17 schema:datePublished 2017
18 schema:datePublishedReg 2017-01-01
19 schema:description Drug safety surveillance plays a significant role in supporting medication decision-making by both healthcare providers and patients. Extracting adverse drug events (ADEs) from social media provides a promising direction to addressing this challenging task. Prior studies typically perform lexicon-based extraction using existing dictionaries or medical lexicons. While those approaches can capture ADEs and identify risky drugs from patient social media postings, they often fail to detect those ADEs whose descriptive words do not exist in medical lexicons and dictionaries. In addition, their performance is inferior when ADE related social media content is expressed in an ambiguous manner. In this research, we propose a research framework using advanced natural language processing and deep learning for high-performance ADE extraction. The framework consists of training the word embeddings using a large medical domain corpus to capture precise semantic and syntactic word relationships, and a deep learning based named entity recognition method for drug and ADE entity identification and prediction. Experimental results show that our framework significantly outperforms existing models when extracting ADEs from social media in different test beds.
20 schema:editor N777cad5430af4522bb040f01b6751c5b
21 schema:genre chapter
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf Nb3b2ddb3a7c14f1092735bb1b2e7b7a1
25 schema:name A Deep Learning Based Named Entity Recognition Approach for Adverse Drug Events Identification and Extraction in Health Social Media
26 schema:pagination 237-248
27 schema:productId N65a47fdb53e64e589d0a3f417c64f74f
28 N7a31ef997d6d42efb61fe7ac55be1492
29 Ne5ecea992a4b42a898785be11aa913a2
30 schema:publisher N3150868cb6f1428eb6195828c6be59ba
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092406207
32 https://doi.org/10.1007/978-3-319-67964-8_23
33 schema:sdDatePublished 2019-04-15T15:03
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N9ddb33077d2d48cf8836a0db8c8c0e3d
36 schema:url http://link.springer.com/10.1007/978-3-319-67964-8_23
37 sgo:license sg:explorer/license/
38 sgo:sdDataset chapters
39 rdf:type schema:Chapter
40 N01060c46a35f45a2a02c275b38ed81f8 schema:name Pamplin College of Business, Virginia Tech
41 rdf:type schema:Organization
42 N066bcb197cc54476a3816d57d93f953a rdf:first N5842cfad1f9142c383df84cfc0cd9fcf
43 rdf:rest rdf:nil
44 N10c7e2f3244a4993a161e87242eec68c schema:familyName Karahanna
45 schema:givenName Elena
46 rdf:type schema:Person
47 N289db737ff054fac8f9c8705014a2105 rdf:first N10c7e2f3244a4993a161e87242eec68c
48 rdf:rest N066bcb197cc54476a3816d57d93f953a
49 N3150868cb6f1428eb6195828c6be59ba schema:location Cham
50 schema:name Springer International Publishing
51 rdf:type schema:Organisation
52 N39ecd0bf87bb47fbb8172fc70cceb502 schema:affiliation N01060c46a35f45a2a02c275b38ed81f8
53 schema:familyName Wang
54 schema:givenName G. Alan
55 rdf:type schema:Person
56 N3f8f010925cf4aa09bae8465c1c64b61 schema:affiliation N40494f205908451fac0887a1d2545170
57 schema:familyName Xia
58 schema:givenName Long
59 rdf:type schema:Person
60 N40494f205908451fac0887a1d2545170 schema:name Pamplin College of Business, Virginia Tech
61 rdf:type schema:Organization
62 N47affe12c6c744b2bdcd5b204042b6c6 schema:familyName Zeng
63 schema:givenName Daniel Dajun
64 rdf:type schema:Person
65 N50f3ad8fb2fb44e7b610120a8bb0ab78 schema:name Pamplin College of Business, Virginia Tech
66 rdf:type schema:Organization
67 N57d59bd4dada4d1e9cfd16fc63c0f72b rdf:first N3f8f010925cf4aa09bae8465c1c64b61
68 rdf:rest Nd0019113e0454ed39b327da91d54e315
69 N5842cfad1f9142c383df84cfc0cd9fcf schema:familyName Bardhan
70 schema:givenName Indranil
71 rdf:type schema:Person
72 N65a47fdb53e64e589d0a3f417c64f74f schema:name dimensions_id
73 schema:value pub.1092406207
74 rdf:type schema:PropertyValue
75 N777cad5430af4522bb040f01b6751c5b rdf:first Ndbe56f409cc14dde8289e48392ca7018
76 rdf:rest Nd47cba2532904567a63c1d23dad7750d
77 N7a31ef997d6d42efb61fe7ac55be1492 schema:name doi
78 schema:value 10.1007/978-3-319-67964-8_23
79 rdf:type schema:PropertyValue
80 N9880f547b74c4cfb9a7c8497c7906a8c schema:affiliation N50f3ad8fb2fb44e7b610120a8bb0ab78
81 schema:familyName Fan
82 schema:givenName Weiguo
83 rdf:type schema:Person
84 N9ddb33077d2d48cf8836a0db8c8c0e3d schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nb2847b5ee2de46aa8e847318a85f16c9 rdf:first N9880f547b74c4cfb9a7c8497c7906a8c
87 rdf:rest rdf:nil
88 Nb3b2ddb3a7c14f1092735bb1b2e7b7a1 schema:isbn 978-3-319-67963-1
89 978-3-319-67964-8
90 schema:name Smart Health
91 rdf:type schema:Book
92 Nd0019113e0454ed39b327da91d54e315 rdf:first N39ecd0bf87bb47fbb8172fc70cceb502
93 rdf:rest Nb2847b5ee2de46aa8e847318a85f16c9
94 Nd47cba2532904567a63c1d23dad7750d rdf:first N47affe12c6c744b2bdcd5b204042b6c6
95 rdf:rest N289db737ff054fac8f9c8705014a2105
96 Ndbe56f409cc14dde8289e48392ca7018 schema:familyName Chen
97 schema:givenName Hsinchun
98 rdf:type schema:Person
99 Ne5ecea992a4b42a898785be11aa913a2 schema:name readcube_id
100 schema:value 88ffe89524130336a51bc6313b022d314375bdea70f2b89d04b1e57c11e08cda
101 rdf:type schema:PropertyValue
102 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
103 schema:name Information and Computing Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
106 schema:name Artificial Intelligence and Image Processing
107 rdf:type schema:DefinedTerm
108 sg:pub.10.1038/clpt.2012.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024345853
109 https://doi.org/10.1038/clpt.2012.50
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1002/pds.1742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015083994
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.drudis.2008.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010847388
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.jbi.2011.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038812756
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.jbi.2015.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022120579
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1056/nejmp0911494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008064319
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/icassp.2013.6638947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095157363
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/icnn.1996.548916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093652537
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1145/2389707.2389713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011372302
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1162/089976600300015015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007880308
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1287/isre.1120.0466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064711616
130 rdf:type schema:CreativeWork
131 https://doi.org/10.2139/ssrn.1984973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102330248
132 rdf:type schema:CreativeWork
133 https://doi.org/10.3414/me12-02-0004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071312197
134 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...