Inference in a Partial Differential Equations Model of Pulmonary Arterial and Venous Blood Circulation Using Statistical Emulation View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017-10-17

AUTHORS

Umberto Noè , Weiwei Chen , Maurizio Filippone , Nicholas Hill , Dirk Husmeier

ABSTRACT

The present article addresses the problem of inference in a multiscale computational model of pulmonary arterial and venous blood circulation. The model is a computationally expensive simulator which, given specific parameter values, solves a system of nonlinear partial differential equations and returns predicted pressure and flow values at different locations in the arterial and venous blood vessels. The standard approach in parameter calibration for computer code is to emulate the simulator using a Gaussian Process prior. In the present work, we take a different approach and emulate the objective function itself, i.e. the residual sum of squares between the simulations and the observed data. The Efficient Global Optimization (EGO) algorithm [2] is used to minimize the residual sum of squares. A generalization of the EGO algorithm that can handle hidden constraints is described. We demonstrate that this modified emulator achieves a reduction in the computational costs of inference by two orders of magnitude. More... »

PAGES

184-198

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-67834-4_15

DOI

http://dx.doi.org/10.1007/978-3-319-67834-4_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092236331


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Statistics, University of Glasgow, G12 8SQ, Glasgow, UK", 
          "id": "http://www.grid.ac/institutes/grid.8756.c", 
          "name": [
            "School of Mathematics and Statistics, University of Glasgow, G12 8SQ, Glasgow, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "No\u00e8", 
        "givenName": "Umberto", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Center for Regenerative Medicine, Guangxi Medical University, 530021, Nanning, China", 
          "id": "http://www.grid.ac/institutes/grid.256607.0", 
          "name": [
            "Research Center for Regenerative Medicine, Guangxi Medical University, 530021, Nanning, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Weiwei", 
        "id": "sg:person.012176715245.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012176715245.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Eurecom, Campus SophiaTech, 450 Route des Chappes, Biot, France", 
          "id": "http://www.grid.ac/institutes/grid.28848.3e", 
          "name": [
            "Eurecom, Campus SophiaTech, 450 Route des Chappes, Biot, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Filippone", 
        "givenName": "Maurizio", 
        "id": "sg:person.07706215665.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Statistics, University of Glasgow, G12 8SQ, Glasgow, UK", 
          "id": "http://www.grid.ac/institutes/grid.8756.c", 
          "name": [
            "School of Mathematics and Statistics, University of Glasgow, G12 8SQ, Glasgow, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hill", 
        "givenName": "Nicholas", 
        "id": "sg:person.01277662010.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277662010.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Statistics, University of Glasgow, G12 8SQ, Glasgow, UK", 
          "id": "http://www.grid.ac/institutes/grid.8756.c", 
          "name": [
            "School of Mathematics and Statistics, University of Glasgow, G12 8SQ, Glasgow, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Husmeier", 
        "givenName": "Dirk", 
        "id": "sg:person.0601451763.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601451763.91"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-10-17", 
    "datePublishedReg": "2017-10-17", 
    "description": "The present article addresses the problem of inference in a multiscale computational model of pulmonary arterial and venous blood circulation. The model is a computationally expensive simulator which, given specific parameter values, solves a system of nonlinear partial differential equations and returns predicted pressure and flow values at different locations in the arterial and venous blood vessels. The standard approach in parameter calibration for computer code is to emulate the simulator using a Gaussian Process prior. In the present work, we take a different approach and emulate the objective function itself, i.e. the residual sum of squares between the simulations and the observed data. The Efficient Global Optimization (EGO) algorithm\u00a0[2] is used to minimize the residual sum of squares. A generalization of the EGO algorithm that can handle hidden constraints is described. We demonstrate that this modified emulator achieves a reduction in the computational costs of inference by two orders of magnitude.", 
    "editor": [
      {
        "familyName": "Bracciali", 
        "givenName": "Andrea", 
        "type": "Person"
      }, 
      {
        "familyName": "Caravagna", 
        "givenName": "Giulio", 
        "type": "Person"
      }, 
      {
        "familyName": "Gilbert", 
        "givenName": "David", 
        "type": "Person"
      }, 
      {
        "familyName": "Tagliaferri", 
        "givenName": "Roberto", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-67834-4_15", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-67833-7", 
        "978-3-319-67834-4"
      ], 
      "name": "Computational Intelligence Methods for Bioinformatics and Biostatistics", 
      "type": "Book"
    }, 
    "keywords": [
      "nonlinear partial differential equations", 
      "partial differential equation model", 
      "efficient global optimization algorithm", 
      "partial differential equations", 
      "differential equation model", 
      "global optimization algorithm", 
      "residual sum", 
      "problem of inference", 
      "specific parameter values", 
      "differential equations", 
      "EGO algorithm", 
      "statistical emulation", 
      "Gaussian process", 
      "optimization algorithm", 
      "expensive simulators", 
      "objective function", 
      "computational cost", 
      "multiscale computational model", 
      "parameter values", 
      "computer code", 
      "observed data", 
      "parameter calibration", 
      "inference", 
      "computational model", 
      "standard approach", 
      "equation model", 
      "squares", 
      "algorithm", 
      "orders of magnitude", 
      "sum", 
      "equations", 
      "model", 
      "generalization", 
      "different approaches", 
      "venous blood circulation", 
      "constraints", 
      "simulations", 
      "simulator", 
      "problem", 
      "approach", 
      "present work", 
      "present article", 
      "emulator", 
      "code", 
      "function", 
      "system", 
      "values", 
      "emulation", 
      "order", 
      "magnitude", 
      "calibration", 
      "work", 
      "different locations", 
      "cost", 
      "data", 
      "process", 
      "location", 
      "article", 
      "arterial", 
      "circulation", 
      "reduction", 
      "return", 
      "pressure", 
      "venous blood vessels", 
      "vessels", 
      "blood circulation", 
      "blood vessels", 
      "pulmonary arterial"
    ], 
    "name": "Inference in a Partial Differential Equations Model of Pulmonary Arterial and Venous Blood Circulation Using Statistical Emulation", 
    "pagination": "184-198", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092236331"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-67834-4_15"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-67834-4_15", 
      "https://app.dimensions.ai/details/publication/pub.1092236331"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_458.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-67834-4_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67834-4_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67834-4_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67834-4_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67834-4_15'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      23 PREDICATES      93 URIs      86 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-67834-4_15 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N4c6c5de6a29649128822f978d077371c
4 schema:datePublished 2017-10-17
5 schema:datePublishedReg 2017-10-17
6 schema:description The present article addresses the problem of inference in a multiscale computational model of pulmonary arterial and venous blood circulation. The model is a computationally expensive simulator which, given specific parameter values, solves a system of nonlinear partial differential equations and returns predicted pressure and flow values at different locations in the arterial and venous blood vessels. The standard approach in parameter calibration for computer code is to emulate the simulator using a Gaussian Process prior. In the present work, we take a different approach and emulate the objective function itself, i.e. the residual sum of squares between the simulations and the observed data. The Efficient Global Optimization (EGO) algorithm [2] is used to minimize the residual sum of squares. A generalization of the EGO algorithm that can handle hidden constraints is described. We demonstrate that this modified emulator achieves a reduction in the computational costs of inference by two orders of magnitude.
7 schema:editor N0304572f38a54f9f8e366795070a483b
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N34090516d0e14736900035d0e550e2db
12 schema:keywords EGO algorithm
13 Gaussian process
14 algorithm
15 approach
16 arterial
17 article
18 blood circulation
19 blood vessels
20 calibration
21 circulation
22 code
23 computational cost
24 computational model
25 computer code
26 constraints
27 cost
28 data
29 different approaches
30 different locations
31 differential equation model
32 differential equations
33 efficient global optimization algorithm
34 emulation
35 emulator
36 equation model
37 equations
38 expensive simulators
39 function
40 generalization
41 global optimization algorithm
42 inference
43 location
44 magnitude
45 model
46 multiscale computational model
47 nonlinear partial differential equations
48 objective function
49 observed data
50 optimization algorithm
51 order
52 orders of magnitude
53 parameter calibration
54 parameter values
55 partial differential equation model
56 partial differential equations
57 present article
58 present work
59 pressure
60 problem
61 problem of inference
62 process
63 pulmonary arterial
64 reduction
65 residual sum
66 return
67 simulations
68 simulator
69 specific parameter values
70 squares
71 standard approach
72 statistical emulation
73 sum
74 system
75 values
76 venous blood circulation
77 venous blood vessels
78 vessels
79 work
80 schema:name Inference in a Partial Differential Equations Model of Pulmonary Arterial and Venous Blood Circulation Using Statistical Emulation
81 schema:pagination 184-198
82 schema:productId N5f480cdfb42344b3aea986d2a094e841
83 N85742d2d6cbb4458b1294f9526d9784c
84 schema:publisher N90d59d27e5e949418da55b097f91a8d9
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092236331
86 https://doi.org/10.1007/978-3-319-67834-4_15
87 schema:sdDatePublished 2022-05-20T07:48
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher Nb6ea98d747cf447ab74f827ac512f1f1
90 schema:url https://doi.org/10.1007/978-3-319-67834-4_15
91 sgo:license sg:explorer/license/
92 sgo:sdDataset chapters
93 rdf:type schema:Chapter
94 N0304572f38a54f9f8e366795070a483b rdf:first Nb5b91e97662a47a5a41dcaef76a80d59
95 rdf:rest N3806e371afc4439695c4a16a1a0d0da2
96 N0a6c4228bf4945c4b8e1ef35179a912f schema:familyName Caravagna
97 schema:givenName Giulio
98 rdf:type schema:Person
99 N2594e47525904c3c98a3b0f042371264 schema:familyName Tagliaferri
100 schema:givenName Roberto
101 rdf:type schema:Person
102 N34090516d0e14736900035d0e550e2db schema:isbn 978-3-319-67833-7
103 978-3-319-67834-4
104 schema:name Computational Intelligence Methods for Bioinformatics and Biostatistics
105 rdf:type schema:Book
106 N3806e371afc4439695c4a16a1a0d0da2 rdf:first N0a6c4228bf4945c4b8e1ef35179a912f
107 rdf:rest Nce81ac781b1f48c1b92d7c1213a26d4e
108 N41eefdafd8bc4893b9df47bbf2862c86 schema:affiliation grid-institutes:grid.8756.c
109 schema:familyName Noè
110 schema:givenName Umberto
111 rdf:type schema:Person
112 N4c6c5de6a29649128822f978d077371c rdf:first N41eefdafd8bc4893b9df47bbf2862c86
113 rdf:rest Nd415a0999b6d4cf1864cdd991517e50f
114 N5f480cdfb42344b3aea986d2a094e841 schema:name doi
115 schema:value 10.1007/978-3-319-67834-4_15
116 rdf:type schema:PropertyValue
117 N7774c9ff7b3940189ba5da9e5c3a91a7 rdf:first sg:person.0601451763.91
118 rdf:rest rdf:nil
119 N85742d2d6cbb4458b1294f9526d9784c schema:name dimensions_id
120 schema:value pub.1092236331
121 rdf:type schema:PropertyValue
122 N90d59d27e5e949418da55b097f91a8d9 schema:name Springer Nature
123 rdf:type schema:Organisation
124 Nb5b91e97662a47a5a41dcaef76a80d59 schema:familyName Bracciali
125 schema:givenName Andrea
126 rdf:type schema:Person
127 Nb6ea98d747cf447ab74f827ac512f1f1 schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 Nbf83ed9f62a4464dae01057876b30b69 schema:familyName Gilbert
130 schema:givenName David
131 rdf:type schema:Person
132 Nc6d3328fe9d24e3486419901b04df10b rdf:first sg:person.01277662010.12
133 rdf:rest N7774c9ff7b3940189ba5da9e5c3a91a7
134 Nce81ac781b1f48c1b92d7c1213a26d4e rdf:first Nbf83ed9f62a4464dae01057876b30b69
135 rdf:rest Nd774f1ab885b4cfebf85e1bbbc93b9dc
136 Nd415a0999b6d4cf1864cdd991517e50f rdf:first sg:person.012176715245.78
137 rdf:rest Nfb981de8a7e34ae19c06236c607eb676
138 Nd774f1ab885b4cfebf85e1bbbc93b9dc rdf:first N2594e47525904c3c98a3b0f042371264
139 rdf:rest rdf:nil
140 Nfb981de8a7e34ae19c06236c607eb676 rdf:first sg:person.07706215665.03
141 rdf:rest Nc6d3328fe9d24e3486419901b04df10b
142 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
143 schema:name Mathematical Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
146 schema:name Applied Mathematics
147 rdf:type schema:DefinedTerm
148 sg:person.012176715245.78 schema:affiliation grid-institutes:grid.256607.0
149 schema:familyName Chen
150 schema:givenName Weiwei
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012176715245.78
152 rdf:type schema:Person
153 sg:person.01277662010.12 schema:affiliation grid-institutes:grid.8756.c
154 schema:familyName Hill
155 schema:givenName Nicholas
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277662010.12
157 rdf:type schema:Person
158 sg:person.0601451763.91 schema:affiliation grid-institutes:grid.8756.c
159 schema:familyName Husmeier
160 schema:givenName Dirk
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601451763.91
162 rdf:type schema:Person
163 sg:person.07706215665.03 schema:affiliation grid-institutes:grid.28848.3e
164 schema:familyName Filippone
165 schema:givenName Maurizio
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03
167 rdf:type schema:Person
168 grid-institutes:grid.256607.0 schema:alternateName Research Center for Regenerative Medicine, Guangxi Medical University, 530021, Nanning, China
169 schema:name Research Center for Regenerative Medicine, Guangxi Medical University, 530021, Nanning, China
170 rdf:type schema:Organization
171 grid-institutes:grid.28848.3e schema:alternateName Eurecom, Campus SophiaTech, 450 Route des Chappes, Biot, France
172 schema:name Eurecom, Campus SophiaTech, 450 Route des Chappes, Biot, France
173 rdf:type schema:Organization
174 grid-institutes:grid.8756.c schema:alternateName School of Mathematics and Statistics, University of Glasgow, G12 8SQ, Glasgow, UK
175 schema:name School of Mathematics and Statistics, University of Glasgow, G12 8SQ, Glasgow, UK
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...