Ontology type: schema:Chapter Open Access: True
2017-10-17
AUTHORSUmberto Noè , Weiwei Chen , Maurizio Filippone , Nicholas Hill , Dirk Husmeier
ABSTRACTThe present article addresses the problem of inference in a multiscale computational model of pulmonary arterial and venous blood circulation. The model is a computationally expensive simulator which, given specific parameter values, solves a system of nonlinear partial differential equations and returns predicted pressure and flow values at different locations in the arterial and venous blood vessels. The standard approach in parameter calibration for computer code is to emulate the simulator using a Gaussian Process prior. In the present work, we take a different approach and emulate the objective function itself, i.e. the residual sum of squares between the simulations and the observed data. The Efficient Global Optimization (EGO) algorithm [2] is used to minimize the residual sum of squares. A generalization of the EGO algorithm that can handle hidden constraints is described. We demonstrate that this modified emulator achieves a reduction in the computational costs of inference by two orders of magnitude. More... »
PAGES184-198
Computational Intelligence Methods for Bioinformatics and Biostatistics
ISBN
978-3-319-67833-7
978-3-319-67834-4
http://scigraph.springernature.com/pub.10.1007/978-3-319-67834-4_15
DOIhttp://dx.doi.org/10.1007/978-3-319-67834-4_15
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1092236331
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "School of Mathematics and Statistics, University of Glasgow, G12 8SQ, Glasgow, UK",
"id": "http://www.grid.ac/institutes/grid.8756.c",
"name": [
"School of Mathematics and Statistics, University of Glasgow, G12 8SQ, Glasgow, UK"
],
"type": "Organization"
},
"familyName": "No\u00e8",
"givenName": "Umberto",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Research Center for Regenerative Medicine, Guangxi Medical University, 530021, Nanning, China",
"id": "http://www.grid.ac/institutes/grid.256607.0",
"name": [
"Research Center for Regenerative Medicine, Guangxi Medical University, 530021, Nanning, China"
],
"type": "Organization"
},
"familyName": "Chen",
"givenName": "Weiwei",
"id": "sg:person.012176715245.78",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012176715245.78"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Eurecom, Campus SophiaTech, 450 Route des Chappes, Biot, France",
"id": "http://www.grid.ac/institutes/grid.28848.3e",
"name": [
"Eurecom, Campus SophiaTech, 450 Route des Chappes, Biot, France"
],
"type": "Organization"
},
"familyName": "Filippone",
"givenName": "Maurizio",
"id": "sg:person.07706215665.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Mathematics and Statistics, University of Glasgow, G12 8SQ, Glasgow, UK",
"id": "http://www.grid.ac/institutes/grid.8756.c",
"name": [
"School of Mathematics and Statistics, University of Glasgow, G12 8SQ, Glasgow, UK"
],
"type": "Organization"
},
"familyName": "Hill",
"givenName": "Nicholas",
"id": "sg:person.01277662010.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277662010.12"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Mathematics and Statistics, University of Glasgow, G12 8SQ, Glasgow, UK",
"id": "http://www.grid.ac/institutes/grid.8756.c",
"name": [
"School of Mathematics and Statistics, University of Glasgow, G12 8SQ, Glasgow, UK"
],
"type": "Organization"
},
"familyName": "Husmeier",
"givenName": "Dirk",
"id": "sg:person.0601451763.91",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601451763.91"
],
"type": "Person"
}
],
"datePublished": "2017-10-17",
"datePublishedReg": "2017-10-17",
"description": "The present article addresses the problem of inference in a multiscale computational model of pulmonary arterial and venous blood circulation. The model is a computationally expensive simulator which, given specific parameter values, solves a system of nonlinear partial differential equations and returns predicted pressure and flow values at different locations in the arterial and venous blood vessels. The standard approach in parameter calibration for computer code is to emulate the simulator using a Gaussian Process prior. In the present work, we take a different approach and emulate the objective function itself, i.e. the residual sum of squares between the simulations and the observed data. The Efficient Global Optimization (EGO) algorithm\u00a0[2] is used to minimize the residual sum of squares. A generalization of the EGO algorithm that can handle hidden constraints is described. We demonstrate that this modified emulator achieves a reduction in the computational costs of inference by two orders of magnitude.",
"editor": [
{
"familyName": "Bracciali",
"givenName": "Andrea",
"type": "Person"
},
{
"familyName": "Caravagna",
"givenName": "Giulio",
"type": "Person"
},
{
"familyName": "Gilbert",
"givenName": "David",
"type": "Person"
},
{
"familyName": "Tagliaferri",
"givenName": "Roberto",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-67834-4_15",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-319-67833-7",
"978-3-319-67834-4"
],
"name": "Computational Intelligence Methods for Bioinformatics and Biostatistics",
"type": "Book"
},
"keywords": [
"nonlinear partial differential equations",
"partial differential equation model",
"efficient global optimization algorithm",
"partial differential equations",
"differential equation model",
"global optimization algorithm",
"residual sum",
"problem of inference",
"specific parameter values",
"differential equations",
"EGO algorithm",
"statistical emulation",
"Gaussian process",
"optimization algorithm",
"expensive simulators",
"objective function",
"computational cost",
"multiscale computational model",
"parameter values",
"computer code",
"observed data",
"parameter calibration",
"inference",
"computational model",
"standard approach",
"equation model",
"squares",
"algorithm",
"orders of magnitude",
"sum",
"equations",
"model",
"generalization",
"different approaches",
"venous blood circulation",
"constraints",
"simulations",
"simulator",
"problem",
"approach",
"present work",
"present article",
"emulator",
"code",
"function",
"system",
"values",
"emulation",
"order",
"magnitude",
"calibration",
"work",
"different locations",
"cost",
"data",
"process",
"location",
"article",
"arterial",
"circulation",
"reduction",
"return",
"pressure",
"venous blood vessels",
"vessels",
"blood circulation",
"blood vessels",
"pulmonary arterial"
],
"name": "Inference in a Partial Differential Equations Model of Pulmonary Arterial and Venous Blood Circulation Using Statistical Emulation",
"pagination": "184-198",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1092236331"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-67834-4_15"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-67834-4_15",
"https://app.dimensions.ai/details/publication/pub.1092236331"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:48",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_458.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-67834-4_15"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67834-4_15'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67834-4_15'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67834-4_15'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67834-4_15'
This table displays all metadata directly associated to this object as RDF triples.
176 TRIPLES
23 PREDICATES
93 URIs
86 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-67834-4_15 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | schema:author | N4c6c5de6a29649128822f978d077371c |
4 | ″ | schema:datePublished | 2017-10-17 |
5 | ″ | schema:datePublishedReg | 2017-10-17 |
6 | ″ | schema:description | The present article addresses the problem of inference in a multiscale computational model of pulmonary arterial and venous blood circulation. The model is a computationally expensive simulator which, given specific parameter values, solves a system of nonlinear partial differential equations and returns predicted pressure and flow values at different locations in the arterial and venous blood vessels. The standard approach in parameter calibration for computer code is to emulate the simulator using a Gaussian Process prior. In the present work, we take a different approach and emulate the objective function itself, i.e. the residual sum of squares between the simulations and the observed data. The Efficient Global Optimization (EGO) algorithm [2] is used to minimize the residual sum of squares. A generalization of the EGO algorithm that can handle hidden constraints is described. We demonstrate that this modified emulator achieves a reduction in the computational costs of inference by two orders of magnitude. |
7 | ″ | schema:editor | N0304572f38a54f9f8e366795070a483b |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | N34090516d0e14736900035d0e550e2db |
12 | ″ | schema:keywords | EGO algorithm |
13 | ″ | ″ | Gaussian process |
14 | ″ | ″ | algorithm |
15 | ″ | ″ | approach |
16 | ″ | ″ | arterial |
17 | ″ | ″ | article |
18 | ″ | ″ | blood circulation |
19 | ″ | ″ | blood vessels |
20 | ″ | ″ | calibration |
21 | ″ | ″ | circulation |
22 | ″ | ″ | code |
23 | ″ | ″ | computational cost |
24 | ″ | ″ | computational model |
25 | ″ | ″ | computer code |
26 | ″ | ″ | constraints |
27 | ″ | ″ | cost |
28 | ″ | ″ | data |
29 | ″ | ″ | different approaches |
30 | ″ | ″ | different locations |
31 | ″ | ″ | differential equation model |
32 | ″ | ″ | differential equations |
33 | ″ | ″ | efficient global optimization algorithm |
34 | ″ | ″ | emulation |
35 | ″ | ″ | emulator |
36 | ″ | ″ | equation model |
37 | ″ | ″ | equations |
38 | ″ | ″ | expensive simulators |
39 | ″ | ″ | function |
40 | ″ | ″ | generalization |
41 | ″ | ″ | global optimization algorithm |
42 | ″ | ″ | inference |
43 | ″ | ″ | location |
44 | ″ | ″ | magnitude |
45 | ″ | ″ | model |
46 | ″ | ″ | multiscale computational model |
47 | ″ | ″ | nonlinear partial differential equations |
48 | ″ | ″ | objective function |
49 | ″ | ″ | observed data |
50 | ″ | ″ | optimization algorithm |
51 | ″ | ″ | order |
52 | ″ | ″ | orders of magnitude |
53 | ″ | ″ | parameter calibration |
54 | ″ | ″ | parameter values |
55 | ″ | ″ | partial differential equation model |
56 | ″ | ″ | partial differential equations |
57 | ″ | ″ | present article |
58 | ″ | ″ | present work |
59 | ″ | ″ | pressure |
60 | ″ | ″ | problem |
61 | ″ | ″ | problem of inference |
62 | ″ | ″ | process |
63 | ″ | ″ | pulmonary arterial |
64 | ″ | ″ | reduction |
65 | ″ | ″ | residual sum |
66 | ″ | ″ | return |
67 | ″ | ″ | simulations |
68 | ″ | ″ | simulator |
69 | ″ | ″ | specific parameter values |
70 | ″ | ″ | squares |
71 | ″ | ″ | standard approach |
72 | ″ | ″ | statistical emulation |
73 | ″ | ″ | sum |
74 | ″ | ″ | system |
75 | ″ | ″ | values |
76 | ″ | ″ | venous blood circulation |
77 | ″ | ″ | venous blood vessels |
78 | ″ | ″ | vessels |
79 | ″ | ″ | work |
80 | ″ | schema:name | Inference in a Partial Differential Equations Model of Pulmonary Arterial and Venous Blood Circulation Using Statistical Emulation |
81 | ″ | schema:pagination | 184-198 |
82 | ″ | schema:productId | N5f480cdfb42344b3aea986d2a094e841 |
83 | ″ | ″ | N85742d2d6cbb4458b1294f9526d9784c |
84 | ″ | schema:publisher | N90d59d27e5e949418da55b097f91a8d9 |
85 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1092236331 |
86 | ″ | ″ | https://doi.org/10.1007/978-3-319-67834-4_15 |
87 | ″ | schema:sdDatePublished | 2022-05-20T07:48 |
88 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
89 | ″ | schema:sdPublisher | Nb6ea98d747cf447ab74f827ac512f1f1 |
90 | ″ | schema:url | https://doi.org/10.1007/978-3-319-67834-4_15 |
91 | ″ | sgo:license | sg:explorer/license/ |
92 | ″ | sgo:sdDataset | chapters |
93 | ″ | rdf:type | schema:Chapter |
94 | N0304572f38a54f9f8e366795070a483b | rdf:first | Nb5b91e97662a47a5a41dcaef76a80d59 |
95 | ″ | rdf:rest | N3806e371afc4439695c4a16a1a0d0da2 |
96 | N0a6c4228bf4945c4b8e1ef35179a912f | schema:familyName | Caravagna |
97 | ″ | schema:givenName | Giulio |
98 | ″ | rdf:type | schema:Person |
99 | N2594e47525904c3c98a3b0f042371264 | schema:familyName | Tagliaferri |
100 | ″ | schema:givenName | Roberto |
101 | ″ | rdf:type | schema:Person |
102 | N34090516d0e14736900035d0e550e2db | schema:isbn | 978-3-319-67833-7 |
103 | ″ | ″ | 978-3-319-67834-4 |
104 | ″ | schema:name | Computational Intelligence Methods for Bioinformatics and Biostatistics |
105 | ″ | rdf:type | schema:Book |
106 | N3806e371afc4439695c4a16a1a0d0da2 | rdf:first | N0a6c4228bf4945c4b8e1ef35179a912f |
107 | ″ | rdf:rest | Nce81ac781b1f48c1b92d7c1213a26d4e |
108 | N41eefdafd8bc4893b9df47bbf2862c86 | schema:affiliation | grid-institutes:grid.8756.c |
109 | ″ | schema:familyName | Noè |
110 | ″ | schema:givenName | Umberto |
111 | ″ | rdf:type | schema:Person |
112 | N4c6c5de6a29649128822f978d077371c | rdf:first | N41eefdafd8bc4893b9df47bbf2862c86 |
113 | ″ | rdf:rest | Nd415a0999b6d4cf1864cdd991517e50f |
114 | N5f480cdfb42344b3aea986d2a094e841 | schema:name | doi |
115 | ″ | schema:value | 10.1007/978-3-319-67834-4_15 |
116 | ″ | rdf:type | schema:PropertyValue |
117 | N7774c9ff7b3940189ba5da9e5c3a91a7 | rdf:first | sg:person.0601451763.91 |
118 | ″ | rdf:rest | rdf:nil |
119 | N85742d2d6cbb4458b1294f9526d9784c | schema:name | dimensions_id |
120 | ″ | schema:value | pub.1092236331 |
121 | ″ | rdf:type | schema:PropertyValue |
122 | N90d59d27e5e949418da55b097f91a8d9 | schema:name | Springer Nature |
123 | ″ | rdf:type | schema:Organisation |
124 | Nb5b91e97662a47a5a41dcaef76a80d59 | schema:familyName | Bracciali |
125 | ″ | schema:givenName | Andrea |
126 | ″ | rdf:type | schema:Person |
127 | Nb6ea98d747cf447ab74f827ac512f1f1 | schema:name | Springer Nature - SN SciGraph project |
128 | ″ | rdf:type | schema:Organization |
129 | Nbf83ed9f62a4464dae01057876b30b69 | schema:familyName | Gilbert |
130 | ″ | schema:givenName | David |
131 | ″ | rdf:type | schema:Person |
132 | Nc6d3328fe9d24e3486419901b04df10b | rdf:first | sg:person.01277662010.12 |
133 | ″ | rdf:rest | N7774c9ff7b3940189ba5da9e5c3a91a7 |
134 | Nce81ac781b1f48c1b92d7c1213a26d4e | rdf:first | Nbf83ed9f62a4464dae01057876b30b69 |
135 | ″ | rdf:rest | Nd774f1ab885b4cfebf85e1bbbc93b9dc |
136 | Nd415a0999b6d4cf1864cdd991517e50f | rdf:first | sg:person.012176715245.78 |
137 | ″ | rdf:rest | Nfb981de8a7e34ae19c06236c607eb676 |
138 | Nd774f1ab885b4cfebf85e1bbbc93b9dc | rdf:first | N2594e47525904c3c98a3b0f042371264 |
139 | ″ | rdf:rest | rdf:nil |
140 | Nfb981de8a7e34ae19c06236c607eb676 | rdf:first | sg:person.07706215665.03 |
141 | ″ | rdf:rest | Nc6d3328fe9d24e3486419901b04df10b |
142 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
143 | ″ | schema:name | Mathematical Sciences |
144 | ″ | rdf:type | schema:DefinedTerm |
145 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
146 | ″ | schema:name | Applied Mathematics |
147 | ″ | rdf:type | schema:DefinedTerm |
148 | sg:person.012176715245.78 | schema:affiliation | grid-institutes:grid.256607.0 |
149 | ″ | schema:familyName | Chen |
150 | ″ | schema:givenName | Weiwei |
151 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012176715245.78 |
152 | ″ | rdf:type | schema:Person |
153 | sg:person.01277662010.12 | schema:affiliation | grid-institutes:grid.8756.c |
154 | ″ | schema:familyName | Hill |
155 | ″ | schema:givenName | Nicholas |
156 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277662010.12 |
157 | ″ | rdf:type | schema:Person |
158 | sg:person.0601451763.91 | schema:affiliation | grid-institutes:grid.8756.c |
159 | ″ | schema:familyName | Husmeier |
160 | ″ | schema:givenName | Dirk |
161 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601451763.91 |
162 | ″ | rdf:type | schema:Person |
163 | sg:person.07706215665.03 | schema:affiliation | grid-institutes:grid.28848.3e |
164 | ″ | schema:familyName | Filippone |
165 | ″ | schema:givenName | Maurizio |
166 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03 |
167 | ″ | rdf:type | schema:Person |
168 | grid-institutes:grid.256607.0 | schema:alternateName | Research Center for Regenerative Medicine, Guangxi Medical University, 530021, Nanning, China |
169 | ″ | schema:name | Research Center for Regenerative Medicine, Guangxi Medical University, 530021, Nanning, China |
170 | ″ | rdf:type | schema:Organization |
171 | grid-institutes:grid.28848.3e | schema:alternateName | Eurecom, Campus SophiaTech, 450 Route des Chappes, Biot, France |
172 | ″ | schema:name | Eurecom, Campus SophiaTech, 450 Route des Chappes, Biot, France |
173 | ″ | rdf:type | schema:Organization |
174 | grid-institutes:grid.8756.c | schema:alternateName | School of Mathematics and Statistics, University of Glasgow, G12 8SQ, Glasgow, UK |
175 | ″ | schema:name | School of Mathematics and Statistics, University of Glasgow, G12 8SQ, Glasgow, UK |
176 | ″ | rdf:type | schema:Organization |