Parameter Inference in Differential Equation Models of Biopathways Using Time Warped Gradient Matching View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017-10-17

AUTHORS

Mu Niu , Simon Rogers , Maurizio Filippone , Dirk Husmeier

ABSTRACT

Parameter inference in mechanistic models of biopathways based on systems of coupled differential equations is a topical yet computationally challenging problem due to the fact that each parameter adaptation involves a numerical integration of the differential equations. Techniques based on gradient matching, which aim to minimize the discrepancy between the slope of a data interpolant and the derivatives predicted from the differential equations, offer a computationally appealing shortcut to the inference problem. Gradient matching critically hinges on the smoothing scheme for function interpolation, with spurious oscillations in the interpolant having a dramatic effect on the subsequent inference. The present article demonstrates that a time warping approach that aims to homogenize intrinsic functional length scales can lead to a significant improvement in parameter estimation accuracy. We demonstrate the effectiveness of this scheme on noisy data from a dynamical system with periodic limit cycle, and a biopathway model. More... »

PAGES

145-159

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-67834-4_12

DOI

http://dx.doi.org/10.1007/978-3-319-67834-4_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092235700


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Computing, Electronics and Mathematics, Plymouth University, Plymouth, UK", 
          "id": "http://www.grid.ac/institutes/grid.11201.33", 
          "name": [
            "School of Computing, Electronics and Mathematics, Plymouth University, Plymouth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niu", 
        "givenName": "Mu", 
        "id": "sg:person.01366452107.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366452107.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Glasgow, Glasgow, UK", 
          "id": "http://www.grid.ac/institutes/grid.8756.c", 
          "name": [
            "Department of Computer Science, University of Glasgow, Glasgow, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rogers", 
        "givenName": "Simon", 
        "id": "sg:person.01240064014.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240064014.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Data Science, Eurecom, France", 
          "id": "http://www.grid.ac/institutes/grid.28848.3e", 
          "name": [
            "Department of Data Science, Eurecom, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Filippone", 
        "givenName": "Maurizio", 
        "id": "sg:person.07706215665.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Statistics, University of Glasgow, Glasgow, UK", 
          "id": "http://www.grid.ac/institutes/grid.8756.c", 
          "name": [
            "School of Mathematics and Statistics, University of Glasgow, Glasgow, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Husmeier", 
        "givenName": "Dirk", 
        "id": "sg:person.0601451763.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601451763.91"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-10-17", 
    "datePublishedReg": "2017-10-17", 
    "description": "Parameter inference in mechanistic models of biopathways based on systems of coupled differential equations is a topical yet computationally challenging problem due to the fact that each parameter adaptation involves a numerical integration of the differential equations. Techniques based on gradient matching, which aim to minimize the discrepancy between the slope of a data interpolant and the derivatives predicted from the differential equations, offer a computationally appealing shortcut to the inference problem. Gradient matching critically hinges on the smoothing scheme for function interpolation, with spurious oscillations in the interpolant having a dramatic effect on the subsequent inference. The present article demonstrates that a time warping approach that aims to homogenize intrinsic functional length scales can lead to a significant improvement in parameter estimation accuracy. We demonstrate the effectiveness of this scheme on noisy data from a dynamical system with periodic limit cycle, and a biopathway model.", 
    "editor": [
      {
        "familyName": "Bracciali", 
        "givenName": "Andrea", 
        "type": "Person"
      }, 
      {
        "familyName": "Caravagna", 
        "givenName": "Giulio", 
        "type": "Person"
      }, 
      {
        "familyName": "Gilbert", 
        "givenName": "David", 
        "type": "Person"
      }, 
      {
        "familyName": "Tagliaferri", 
        "givenName": "Roberto", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-67834-4_12", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-67833-7", 
        "978-3-319-67834-4"
      ], 
      "name": "Computational Intelligence Methods for Bioinformatics and Biostatistics", 
      "type": "Book"
    }, 
    "keywords": [
      "differential equations", 
      "gradient matching", 
      "parameter inference", 
      "differential equation model", 
      "parameter estimation accuracy", 
      "periodic limit cycle", 
      "dynamical systems", 
      "spurious oscillations", 
      "inference problem", 
      "parameter adaptation", 
      "numerical integration", 
      "limit cycles", 
      "noisy data", 
      "biopathway models", 
      "function interpolation", 
      "smoothing scheme", 
      "estimation accuracy", 
      "equations", 
      "subsequent inference", 
      "equation model", 
      "inference", 
      "biopathways", 
      "problem", 
      "scheme", 
      "interpolants", 
      "model", 
      "mechanistic model", 
      "interpolation", 
      "system", 
      "length scales", 
      "oscillations", 
      "accuracy", 
      "present article", 
      "matching", 
      "effectiveness", 
      "shortcuts", 
      "approach", 
      "derivatives", 
      "technique", 
      "integration", 
      "data", 
      "fact", 
      "hinges", 
      "significant improvement", 
      "time", 
      "article", 
      "scale", 
      "improvement", 
      "adaptation", 
      "discrepancy", 
      "cycle", 
      "dramatic effect", 
      "slope", 
      "effect", 
      "intrinsic functional length scales", 
      "functional length scales", 
      "Time Warped Gradient Matching", 
      "Warped Gradient Matching"
    ], 
    "name": "Parameter Inference in Differential Equation Models of Biopathways Using Time Warped Gradient Matching", 
    "pagination": "145-159", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092235700"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-67834-4_12"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-67834-4_12", 
      "https://app.dimensions.ai/details/publication/pub.1092235700"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_248.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-67834-4_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67834-4_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67834-4_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67834-4_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67834-4_12'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      23 PREDICATES      83 URIs      76 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-67834-4_12 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nae2aa614fe5241e6b3816e9d1d286996
4 schema:datePublished 2017-10-17
5 schema:datePublishedReg 2017-10-17
6 schema:description Parameter inference in mechanistic models of biopathways based on systems of coupled differential equations is a topical yet computationally challenging problem due to the fact that each parameter adaptation involves a numerical integration of the differential equations. Techniques based on gradient matching, which aim to minimize the discrepancy between the slope of a data interpolant and the derivatives predicted from the differential equations, offer a computationally appealing shortcut to the inference problem. Gradient matching critically hinges on the smoothing scheme for function interpolation, with spurious oscillations in the interpolant having a dramatic effect on the subsequent inference. The present article demonstrates that a time warping approach that aims to homogenize intrinsic functional length scales can lead to a significant improvement in parameter estimation accuracy. We demonstrate the effectiveness of this scheme on noisy data from a dynamical system with periodic limit cycle, and a biopathway model.
7 schema:editor Nd54d28e3c76e41598ffc786b77fe1cc0
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nc5ed1a788b3b465d9f40c2edc9378cd5
12 schema:keywords Time Warped Gradient Matching
13 Warped Gradient Matching
14 accuracy
15 adaptation
16 approach
17 article
18 biopathway models
19 biopathways
20 cycle
21 data
22 derivatives
23 differential equation model
24 differential equations
25 discrepancy
26 dramatic effect
27 dynamical systems
28 effect
29 effectiveness
30 equation model
31 equations
32 estimation accuracy
33 fact
34 function interpolation
35 functional length scales
36 gradient matching
37 hinges
38 improvement
39 inference
40 inference problem
41 integration
42 interpolants
43 interpolation
44 intrinsic functional length scales
45 length scales
46 limit cycles
47 matching
48 mechanistic model
49 model
50 noisy data
51 numerical integration
52 oscillations
53 parameter adaptation
54 parameter estimation accuracy
55 parameter inference
56 periodic limit cycle
57 present article
58 problem
59 scale
60 scheme
61 shortcuts
62 significant improvement
63 slope
64 smoothing scheme
65 spurious oscillations
66 subsequent inference
67 system
68 technique
69 time
70 schema:name Parameter Inference in Differential Equation Models of Biopathways Using Time Warped Gradient Matching
71 schema:pagination 145-159
72 schema:productId N7fdf4e4212574306ac9d5d5d0e3c5670
73 Nb21dbb409e764dafbbfd1398b95a0071
74 schema:publisher Nefc2282777754b2dae09dcd3aa2fef8c
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092235700
76 https://doi.org/10.1007/978-3-319-67834-4_12
77 schema:sdDatePublished 2022-01-01T19:14
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N4ddcbb804ca244ccad3f24e45e8006ab
80 schema:url https://doi.org/10.1007/978-3-319-67834-4_12
81 sgo:license sg:explorer/license/
82 sgo:sdDataset chapters
83 rdf:type schema:Chapter
84 N086f15cc401f4ef39da97c598a3d440d schema:familyName Tagliaferri
85 schema:givenName Roberto
86 rdf:type schema:Person
87 N4ddcbb804ca244ccad3f24e45e8006ab schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N5d04398093b54439bef55cb41f495f1e rdf:first Nfd2a4f5d90c6407cb3abae7e71f63812
90 rdf:rest N7d472d670958407ca9625eb590e11bab
91 N72f42bbfd179446a8ebe41ef671ec0f1 schema:familyName Bracciali
92 schema:givenName Andrea
93 rdf:type schema:Person
94 N7d472d670958407ca9625eb590e11bab rdf:first N8b0f9466383c4fef8e177d323ed6e89e
95 rdf:rest Ne85c7cf550c74f2e98ab88aeaece42db
96 N7fdf4e4212574306ac9d5d5d0e3c5670 schema:name doi
97 schema:value 10.1007/978-3-319-67834-4_12
98 rdf:type schema:PropertyValue
99 N8b0f9466383c4fef8e177d323ed6e89e schema:familyName Gilbert
100 schema:givenName David
101 rdf:type schema:Person
102 N96a303fb248b4e1dbed310f809360644 rdf:first sg:person.07706215665.03
103 rdf:rest Ne8a5fa51c9da4c65a2e482ba727ec3e8
104 Nae2aa614fe5241e6b3816e9d1d286996 rdf:first sg:person.01366452107.31
105 rdf:rest Nf8bd047b4a21440f929b805a01c6aeb2
106 Nb21dbb409e764dafbbfd1398b95a0071 schema:name dimensions_id
107 schema:value pub.1092235700
108 rdf:type schema:PropertyValue
109 Nc5ed1a788b3b465d9f40c2edc9378cd5 schema:isbn 978-3-319-67833-7
110 978-3-319-67834-4
111 schema:name Computational Intelligence Methods for Bioinformatics and Biostatistics
112 rdf:type schema:Book
113 Nd54d28e3c76e41598ffc786b77fe1cc0 rdf:first N72f42bbfd179446a8ebe41ef671ec0f1
114 rdf:rest N5d04398093b54439bef55cb41f495f1e
115 Ne85c7cf550c74f2e98ab88aeaece42db rdf:first N086f15cc401f4ef39da97c598a3d440d
116 rdf:rest rdf:nil
117 Ne8a5fa51c9da4c65a2e482ba727ec3e8 rdf:first sg:person.0601451763.91
118 rdf:rest rdf:nil
119 Nefc2282777754b2dae09dcd3aa2fef8c schema:name Springer Nature
120 rdf:type schema:Organisation
121 Nf8bd047b4a21440f929b805a01c6aeb2 rdf:first sg:person.01240064014.24
122 rdf:rest N96a303fb248b4e1dbed310f809360644
123 Nfd2a4f5d90c6407cb3abae7e71f63812 schema:familyName Caravagna
124 schema:givenName Giulio
125 rdf:type schema:Person
126 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
127 schema:name Mathematical Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
130 schema:name Statistics
131 rdf:type schema:DefinedTerm
132 sg:person.01240064014.24 schema:affiliation grid-institutes:grid.8756.c
133 schema:familyName Rogers
134 schema:givenName Simon
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240064014.24
136 rdf:type schema:Person
137 sg:person.01366452107.31 schema:affiliation grid-institutes:grid.11201.33
138 schema:familyName Niu
139 schema:givenName Mu
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366452107.31
141 rdf:type schema:Person
142 sg:person.0601451763.91 schema:affiliation grid-institutes:grid.8756.c
143 schema:familyName Husmeier
144 schema:givenName Dirk
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601451763.91
146 rdf:type schema:Person
147 sg:person.07706215665.03 schema:affiliation grid-institutes:grid.28848.3e
148 schema:familyName Filippone
149 schema:givenName Maurizio
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03
151 rdf:type schema:Person
152 grid-institutes:grid.11201.33 schema:alternateName School of Computing, Electronics and Mathematics, Plymouth University, Plymouth, UK
153 schema:name School of Computing, Electronics and Mathematics, Plymouth University, Plymouth, UK
154 rdf:type schema:Organization
155 grid-institutes:grid.28848.3e schema:alternateName Department of Data Science, Eurecom, France
156 schema:name Department of Data Science, Eurecom, France
157 rdf:type schema:Organization
158 grid-institutes:grid.8756.c schema:alternateName Department of Computer Science, University of Glasgow, Glasgow, UK
159 School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
160 schema:name Department of Computer Science, University of Glasgow, Glasgow, UK
161 School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...