Endogenous Radionanomedicine: Biodistribution and Imaging View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-05-26

AUTHORS

Hongyoon Choi , Dong Soo Lee

ABSTRACT

In vivo distribution of extracellular vesicles (EVs) are important in clinical application. Recently, tracking methods have been developed to monitor EVs in vivo. It ranged from fluorescence imaging to clinically available radionuclide imaging or magnetic resonance imaging. Each method has pros and cons in terms of capability of quantification, penetration depth, availability and clinical translatability. We introduce currently available labeling methods for imaging and their advantages and disadvantages. These imaging methods have elucidated the in vivo biodistribution of EVs. However, technical factors such as isolation, labeling methods and administration methods as well as biological factors including cell sources have resulted in variability of biodistribution patterns. We also review biodistribution results of EVs and what impacts on biodistribution. More... »

PAGES

153-165

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-67720-0_8

DOI

http://dx.doi.org/10.1007/978-3-319-67720-0_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104232923


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, 03080, Seoul, Republic of Korea", 
            "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Hongyoon", 
        "id": "sg:person.0631257534.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631257534.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, 03080, Seoul, Republic of Korea", 
            "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Soo", 
        "id": "sg:person.015617314175.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-05-26", 
    "datePublishedReg": "2018-05-26", 
    "description": "In vivo distribution of extracellular vesicles (EVs) are important in clinical application. Recently, tracking methods have been developed to monitor EVs in vivo. It ranged from fluorescence imaging to clinically available radionuclide imaging or magnetic resonance imaging. Each method has pros and cons in terms of capability of quantification, penetration depth, availability and clinical translatability. We introduce currently available labeling methods for imaging and their advantages and disadvantages. These imaging methods have elucidated the in vivo biodistribution of EVs. However, technical factors such as isolation, labeling methods and administration methods as well as biological factors including cell sources have resulted in variability of biodistribution patterns. We also review biodistribution results of EVs and what impacts on biodistribution.", 
    "editor": [
      {
        "familyName": "Lee", 
        "givenName": "Dong Soo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-67720-0_8", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-67719-4", 
        "978-3-319-67720-0"
      ], 
      "name": "Radionanomedicine", 
      "type": "Book"
    }, 
    "keywords": [
      "extracellular vesicles", 
      "magnetic resonance imaging", 
      "radionuclide imaging", 
      "resonance imaging", 
      "administration methods", 
      "biodistribution results", 
      "clinical translatability", 
      "biodistribution pattern", 
      "vivo biodistribution", 
      "vivo distribution", 
      "clinical application", 
      "cell source", 
      "biodistribution", 
      "imaging", 
      "biological factors", 
      "labeling method", 
      "imaging method", 
      "technical factors", 
      "penetration depth", 
      "factors", 
      "vivo", 
      "tracking method", 
      "translatability", 
      "terms of capability", 
      "vesicles", 
      "cons", 
      "method", 
      "isolation", 
      "patterns", 
      "pros", 
      "quantification", 
      "capability", 
      "impact", 
      "variability", 
      "applications", 
      "depth", 
      "results", 
      "availability", 
      "disadvantages", 
      "advantages", 
      "fluorescence", 
      "distribution", 
      "source", 
      "terms"
    ], 
    "name": "Endogenous Radionanomedicine: Biodistribution and Imaging", 
    "pagination": "153-165", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104232923"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-67720-0_8"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-67720-0_8", 
      "https://app.dimensions.ai/details/publication/pub.1104232923"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_275.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-67720-0_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67720-0_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67720-0_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67720-0_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67720-0_8'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      22 PREDICATES      68 URIs      61 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-67720-0_8 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N67a2cf72ac094a6ea7d0896019230ef3
4 schema:datePublished 2018-05-26
5 schema:datePublishedReg 2018-05-26
6 schema:description In vivo distribution of extracellular vesicles (EVs) are important in clinical application. Recently, tracking methods have been developed to monitor EVs in vivo. It ranged from fluorescence imaging to clinically available radionuclide imaging or magnetic resonance imaging. Each method has pros and cons in terms of capability of quantification, penetration depth, availability and clinical translatability. We introduce currently available labeling methods for imaging and their advantages and disadvantages. These imaging methods have elucidated the in vivo biodistribution of EVs. However, technical factors such as isolation, labeling methods and administration methods as well as biological factors including cell sources have resulted in variability of biodistribution patterns. We also review biodistribution results of EVs and what impacts on biodistribution.
7 schema:editor Nfbe91619db9743babd9afc80b1c48e16
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N0b40fb68c20348adadafab15a8ba4cce
11 schema:keywords administration methods
12 advantages
13 applications
14 availability
15 biodistribution
16 biodistribution pattern
17 biodistribution results
18 biological factors
19 capability
20 cell source
21 clinical application
22 clinical translatability
23 cons
24 depth
25 disadvantages
26 distribution
27 extracellular vesicles
28 factors
29 fluorescence
30 imaging
31 imaging method
32 impact
33 isolation
34 labeling method
35 magnetic resonance imaging
36 method
37 patterns
38 penetration depth
39 pros
40 quantification
41 radionuclide imaging
42 resonance imaging
43 results
44 source
45 technical factors
46 terms
47 terms of capability
48 tracking method
49 translatability
50 variability
51 vesicles
52 vivo
53 vivo biodistribution
54 vivo distribution
55 schema:name Endogenous Radionanomedicine: Biodistribution and Imaging
56 schema:pagination 153-165
57 schema:productId N770e57eb452c4b70aebd72686f592bb0
58 Nce556deb13614819b4b9ae78c5671778
59 schema:publisher N75aee489fe5f42e29b33e456d30eb3bf
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104232923
61 https://doi.org/10.1007/978-3-319-67720-0_8
62 schema:sdDatePublished 2022-10-01T06:55
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nd0d2d9ed371848b781367f1802e9056f
65 schema:url https://doi.org/10.1007/978-3-319-67720-0_8
66 sgo:license sg:explorer/license/
67 sgo:sdDataset chapters
68 rdf:type schema:Chapter
69 N0b40fb68c20348adadafab15a8ba4cce schema:isbn 978-3-319-67719-4
70 978-3-319-67720-0
71 schema:name Radionanomedicine
72 rdf:type schema:Book
73 N4f0dd0100b92471892741436babc8df1 schema:familyName Lee
74 schema:givenName Dong Soo
75 rdf:type schema:Person
76 N67a2cf72ac094a6ea7d0896019230ef3 rdf:first sg:person.0631257534.28
77 rdf:rest N90e33448e8a84ae79f747a9a058e6a56
78 N75aee489fe5f42e29b33e456d30eb3bf schema:name Springer Nature
79 rdf:type schema:Organisation
80 N770e57eb452c4b70aebd72686f592bb0 schema:name doi
81 schema:value 10.1007/978-3-319-67720-0_8
82 rdf:type schema:PropertyValue
83 N90e33448e8a84ae79f747a9a058e6a56 rdf:first sg:person.015617314175.88
84 rdf:rest rdf:nil
85 Nce556deb13614819b4b9ae78c5671778 schema:name dimensions_id
86 schema:value pub.1104232923
87 rdf:type schema:PropertyValue
88 Nd0d2d9ed371848b781367f1802e9056f schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Nfbe91619db9743babd9afc80b1c48e16 rdf:first N4f0dd0100b92471892741436babc8df1
91 rdf:rest rdf:nil
92 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
93 schema:name Physical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
96 schema:name Other Physical Sciences
97 rdf:type schema:DefinedTerm
98 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.31501.36
99 schema:familyName Lee
100 schema:givenName Dong Soo
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
102 rdf:type schema:Person
103 sg:person.0631257534.28 schema:affiliation grid-institutes:grid.31501.36
104 schema:familyName Choi
105 schema:givenName Hongyoon
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631257534.28
107 rdf:type schema:Person
108 grid-institutes:grid.31501.36 schema:alternateName Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, 03080, Seoul, Republic of Korea
109 schema:name Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, 03080, Seoul, Republic of Korea
110 Department of Nuclear Medicine, Seoul National University College of Medicine, 03080, Seoul, Republic of Korea
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...