Tracer Kinetics in Radionanomedicine View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-05-26

AUTHORS

Jae Sung Lee , Seongho Seo , Dong Soo Lee

ABSTRACT

Quantification of the amount of radiolabeled nanomaterials distributed in the animal and human body is important for understanding their in vivo properties (e.g., target delivery, radiolabeling stability, and excretion pathway) and determining future applications. Tracer kinetic analyses could play a vital role in the success of radionanomedicine as it facilitates the development of clinically relevant nanomaterials by providing the pharmacokinetic information. In this chapter, we describe the methodology used in the tracer kinetic analysis of dynamic positron emission tomography (PET) and single photon emission computed tomography (SPECT), starting from how to record the time profiles of tracer concentration in the blood and tissues, two sources of data required for a tracer kinetic model. Compartment models commonly used in PET and SPECT tracer kinetic analysis and their operational equations for fitting the tissue time-activity curves will be introduced. Then, several robust parameter estimation methods will be described. Finally, we will introduce a few examples of the tracer kinetic analysis in radio-nanomaterial studies. More... »

PAGES

293-310

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-67720-0_16

DOI

http://dx.doi.org/10.1007/978-3-319-67720-0_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104232033


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea", 
            "Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jae Sung", 
        "id": "sg:person.0677005044.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677005044.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neuroscience, College of Medicine, Gachon University, Incheon, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.256155.0", 
          "name": [
            "Department of Neuroscience, College of Medicine, Gachon University, Incheon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seo", 
        "givenName": "Seongho", 
        "id": "sg:person.01320513623.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320513623.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea", 
            "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Soo", 
        "id": "sg:person.015617314175.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-05-26", 
    "datePublishedReg": "2018-05-26", 
    "description": "Quantification of the amount of radiolabeled nanomaterials distributed in the animal and human body is important for understanding their in vivo properties (e.g., target delivery, radiolabeling stability, and excretion pathway) and determining future applications. Tracer kinetic analyses could play a vital role in the success of radionanomedicine as it facilitates the development of clinically relevant nanomaterials by providing the pharmacokinetic information. In this chapter, we describe the methodology used in the tracer kinetic analysis of dynamic positron emission tomography (PET) and single photon emission computed tomography (SPECT), starting from how to record the time profiles of tracer concentration in the blood and tissues, two sources of data required for a tracer kinetic model. Compartment models commonly used in PET and SPECT tracer kinetic analysis and their operational equations for fitting the tissue time-activity curves will be introduced. Then, several robust parameter estimation methods will be described. Finally, we will introduce a few examples of the tracer kinetic analysis in radio-nanomaterial studies.", 
    "editor": [
      {
        "familyName": "Lee", 
        "givenName": "Dong Soo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-67720-0_16", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-67719-4", 
        "978-3-319-67720-0"
      ], 
      "name": "Radionanomedicine", 
      "type": "Book"
    }, 
    "keywords": [
      "relevant nanomaterials", 
      "nanomaterials", 
      "radionanomedicine", 
      "future applications", 
      "human body", 
      "vivo properties", 
      "kinetic analysis", 
      "vital role", 
      "positron emission tomography", 
      "applications", 
      "kinetic model", 
      "properties", 
      "single photon emission", 
      "photon emission", 
      "emission", 
      "estimation method", 
      "kinetics", 
      "quantification", 
      "emission tomography", 
      "method", 
      "concentration", 
      "amount", 
      "analysis", 
      "development", 
      "chapter", 
      "source", 
      "dynamic positron emission tomography", 
      "parameter estimation method", 
      "information", 
      "methodology", 
      "tissue", 
      "robust parameter estimation method", 
      "tomography", 
      "time profiles", 
      "profile", 
      "example", 
      "success", 
      "pharmacokinetic information", 
      "blood", 
      "model", 
      "operational equation", 
      "curves", 
      "body", 
      "role", 
      "study", 
      "animals", 
      "tracer kinetic analysis", 
      "tracer concentration", 
      "data", 
      "equations", 
      "compartment model", 
      "tissue time-activity curves", 
      "tracer kinetic model", 
      "tracer kinetics", 
      "time-activity curves", 
      "sources of data"
    ], 
    "name": "Tracer Kinetics in Radionanomedicine", 
    "pagination": "293-310", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104232033"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-67720-0_16"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-67720-0_16", 
      "https://app.dimensions.ai/details/publication/pub.1104232033"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_177.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-67720-0_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67720-0_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67720-0_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67720-0_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67720-0_16'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      22 PREDICATES      79 URIs      72 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-67720-0_16 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Nfdf10822e4c74e469841330a7970061f
4 schema:datePublished 2018-05-26
5 schema:datePublishedReg 2018-05-26
6 schema:description Quantification of the amount of radiolabeled nanomaterials distributed in the animal and human body is important for understanding their in vivo properties (e.g., target delivery, radiolabeling stability, and excretion pathway) and determining future applications. Tracer kinetic analyses could play a vital role in the success of radionanomedicine as it facilitates the development of clinically relevant nanomaterials by providing the pharmacokinetic information. In this chapter, we describe the methodology used in the tracer kinetic analysis of dynamic positron emission tomography (PET) and single photon emission computed tomography (SPECT), starting from how to record the time profiles of tracer concentration in the blood and tissues, two sources of data required for a tracer kinetic model. Compartment models commonly used in PET and SPECT tracer kinetic analysis and their operational equations for fitting the tissue time-activity curves will be introduced. Then, several robust parameter estimation methods will be described. Finally, we will introduce a few examples of the tracer kinetic analysis in radio-nanomaterial studies.
7 schema:editor N9b3d35c2a8ce49728d8dff27e9b03e6b
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N22fc958cdf8c4f17af355bc6b9cd6213
11 schema:keywords amount
12 analysis
13 animals
14 applications
15 blood
16 body
17 chapter
18 compartment model
19 concentration
20 curves
21 data
22 development
23 dynamic positron emission tomography
24 emission
25 emission tomography
26 equations
27 estimation method
28 example
29 future applications
30 human body
31 information
32 kinetic analysis
33 kinetic model
34 kinetics
35 method
36 methodology
37 model
38 nanomaterials
39 operational equation
40 parameter estimation method
41 pharmacokinetic information
42 photon emission
43 positron emission tomography
44 profile
45 properties
46 quantification
47 radionanomedicine
48 relevant nanomaterials
49 robust parameter estimation method
50 role
51 single photon emission
52 source
53 sources of data
54 study
55 success
56 time profiles
57 time-activity curves
58 tissue
59 tissue time-activity curves
60 tomography
61 tracer concentration
62 tracer kinetic analysis
63 tracer kinetic model
64 tracer kinetics
65 vital role
66 vivo properties
67 schema:name Tracer Kinetics in Radionanomedicine
68 schema:pagination 293-310
69 schema:productId N507584f77af84c638c387ed4c28d9cf5
70 Ne92b0f227f374eac83d3375e69f53ee4
71 schema:publisher N0dd52d6a77e9453ca4019e8ac81a1177
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104232033
73 https://doi.org/10.1007/978-3-319-67720-0_16
74 schema:sdDatePublished 2022-10-01T06:54
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher Na1c3d6cf234843539365d213e6010bb3
77 schema:url https://doi.org/10.1007/978-3-319-67720-0_16
78 sgo:license sg:explorer/license/
79 sgo:sdDataset chapters
80 rdf:type schema:Chapter
81 N0dd52d6a77e9453ca4019e8ac81a1177 schema:name Springer Nature
82 rdf:type schema:Organisation
83 N22fc958cdf8c4f17af355bc6b9cd6213 schema:isbn 978-3-319-67719-4
84 978-3-319-67720-0
85 schema:name Radionanomedicine
86 rdf:type schema:Book
87 N507584f77af84c638c387ed4c28d9cf5 schema:name doi
88 schema:value 10.1007/978-3-319-67720-0_16
89 rdf:type schema:PropertyValue
90 N819bd2842a9e4622aaa6d30628fc63ee schema:familyName Lee
91 schema:givenName Dong Soo
92 rdf:type schema:Person
93 N9b3d35c2a8ce49728d8dff27e9b03e6b rdf:first N819bd2842a9e4622aaa6d30628fc63ee
94 rdf:rest rdf:nil
95 Na1c3d6cf234843539365d213e6010bb3 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nc4200e10f0e848afae61afa54a0b499b rdf:first sg:person.015617314175.88
98 rdf:rest rdf:nil
99 Ne48f1ff8af6948e8981413918176dc99 rdf:first sg:person.01320513623.17
100 rdf:rest Nc4200e10f0e848afae61afa54a0b499b
101 Ne92b0f227f374eac83d3375e69f53ee4 schema:name dimensions_id
102 schema:value pub.1104232033
103 rdf:type schema:PropertyValue
104 Nfdf10822e4c74e469841330a7970061f rdf:first sg:person.0677005044.62
105 rdf:rest Ne48f1ff8af6948e8981413918176dc99
106 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
107 schema:name Medical and Health Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
110 schema:name Clinical Sciences
111 rdf:type schema:DefinedTerm
112 sg:person.01320513623.17 schema:affiliation grid-institutes:grid.256155.0
113 schema:familyName Seo
114 schema:givenName Seongho
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320513623.17
116 rdf:type schema:Person
117 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.31501.36
118 schema:familyName Lee
119 schema:givenName Dong Soo
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
121 rdf:type schema:Person
122 sg:person.0677005044.62 schema:affiliation grid-institutes:grid.31501.36
123 schema:familyName Lee
124 schema:givenName Jae Sung
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677005044.62
126 rdf:type schema:Person
127 grid-institutes:grid.256155.0 schema:alternateName Department of Neuroscience, College of Medicine, Gachon University, Incheon, Republic of Korea
128 schema:name Department of Neuroscience, College of Medicine, Gachon University, Incheon, Republic of Korea
129 rdf:type schema:Organization
130 grid-institutes:grid.31501.36 schema:alternateName Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
131 Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
132 schema:name Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
133 Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
134 Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...