Extraction of Airways with Probabilistic State-Space Models and Bayesian Smoothing View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017-09-08

AUTHORS

Raghavendra Selvan , Jens Petersen , Jesper H. Pedersen , Marleen de Bruijne

ABSTRACT

Segmenting tree structures is common in several image processing applications. In medical image analysis, reliable segmentations of airways, vessels, neurons and other tree structures can enable important clinical. applications. We present a framework for tracking tree structures comprising of elongated branches using probabilistic state-space models and Bayesian smoothing. Unlike most existing methods that proceed with sequential tracking of branches, we present an exploratory method, that is less sensitive to local anomalies in the data due to acquisition noise and/or interfering structures. The evolution of individual branches is modelled using a process model and the observed data is incorporated into the update step of the Bayesian smoother using a measurement model that is based on a multi-scale blob detector. Bayesian smoothing is performed using the RTS (Rauch-Tung-Striebel) smoother, which provides Gaussian density estimates of branch states at each tracking step. We select likely branch seed points automatically based on the response of the blob detection and track from all such seed points using the RTS smoother. We use covariance of the marginal posterior density estimated for each branch to discriminate false positive and true positive branches. The method is evaluated on 3D chest CT scans to track airways. We show that the presented method results in additional branches compared to a baseline method based on region growing on probability images More... »

PAGES

53-63

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-67675-3_6

DOI

http://dx.doi.org/10.1007/978-3-319-67675-3_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091554319


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Copenhagen, Copenhagen, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Department of Computer Science, University of Copenhagen, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Selvan", 
        "givenName": "Raghavendra", 
        "id": "sg:person.015077255170.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015077255170.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Copenhagen, Copenhagen, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Department of Computer Science, University of Copenhagen, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petersen", 
        "givenName": "Jens", 
        "id": "sg:person.0621164750.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621164750.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardio-Thoracic Surgery RT, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.475435.4", 
          "name": [
            "Department of Cardio-Thoracic Surgery RT, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pedersen", 
        "givenName": "Jesper H.", 
        "id": "sg:person.07725433554.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07725433554.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departments of Medical Informatics and Radiology, Erasmus MC, Rotterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Computer Science, University of Copenhagen, Copenhagen, Denmark", 
            "Departments of Medical Informatics and Radiology, Erasmus MC, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Bruijne", 
        "givenName": "Marleen", 
        "id": "sg:person.013733372770.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013733372770.12"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-09-08", 
    "datePublishedReg": "2017-09-08", 
    "description": "Segmenting tree structures is common in several image processing applications. In medical image analysis, reliable segmentations of airways, vessels, neurons and other tree structures can enable important clinical. applications. We present a framework for tracking tree structures comprising of elongated branches using probabilistic state-space models and Bayesian smoothing. Unlike most existing methods that proceed with sequential tracking of branches, we present an exploratory method, that is less sensitive to local anomalies in the data due to acquisition noise and/or interfering structures. The evolution of individual branches is modelled using a process model and the observed data is incorporated into the update step of the Bayesian smoother using a measurement model that is based on a multi-scale blob detector. Bayesian smoothing is performed using the RTS (Rauch-Tung-Striebel) smoother, which provides Gaussian density estimates of branch states at each tracking step. We select likely branch seed points automatically based on the response of the blob detection and track from all such seed points using the RTS smoother. We use covariance of the marginal posterior density estimated for each branch to discriminate false positive and true positive branches. The method is evaluated on 3D chest CT scans to track airways. We show that the presented method results in additional branches compared to a baseline method based on region growing on probability images", 
    "editor": [
      {
        "familyName": "Cardoso", 
        "givenName": "M. Jorge", 
        "type": "Person"
      }, 
      {
        "familyName": "Arbel", 
        "givenName": "Tal", 
        "type": "Person"
      }, 
      {
        "familyName": "Ferrante", 
        "givenName": "Enzo", 
        "type": "Person"
      }, 
      {
        "familyName": "Pennec", 
        "givenName": "Xavier", 
        "type": "Person"
      }, 
      {
        "familyName": "Dalca", 
        "givenName": "Adrian V.", 
        "type": "Person"
      }, 
      {
        "familyName": "Parisot", 
        "givenName": "Sarah", 
        "type": "Person"
      }, 
      {
        "familyName": "Joshi", 
        "givenName": "Sarang", 
        "type": "Person"
      }, 
      {
        "familyName": "Batmanghelich", 
        "givenName": "Nematollah K.", 
        "type": "Person"
      }, 
      {
        "familyName": "Sotiras", 
        "givenName": "Aristeidis", 
        "type": "Person"
      }, 
      {
        "familyName": "Nielsen", 
        "givenName": "Mads", 
        "type": "Person"
      }, 
      {
        "familyName": "Sabuncu", 
        "givenName": "Mert R.", 
        "type": "Person"
      }, 
      {
        "familyName": "Fletcher", 
        "givenName": "Tom", 
        "type": "Person"
      }, 
      {
        "familyName": "Shen", 
        "givenName": "Li", 
        "type": "Person"
      }, 
      {
        "familyName": "Durrleman", 
        "givenName": "Stanley", 
        "type": "Person"
      }, 
      {
        "familyName": "Sommer", 
        "givenName": "Stefan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-67675-3_6", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-67674-6", 
        "978-3-319-67675-3"
      ], 
      "name": "Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics", 
      "type": "Book"
    }, 
    "keywords": [
      "probabilistic state space model", 
      "tree structure", 
      "medical image analysis", 
      "image processing applications", 
      "seed points", 
      "such seed points", 
      "blob detection", 
      "image extraction", 
      "blob detector", 
      "baseline methods", 
      "reliable segmentation", 
      "processing applications", 
      "tracking step", 
      "update step", 
      "process model", 
      "RTS smoother", 
      "image analysis", 
      "sequential tracking", 
      "acquisition noise", 
      "exploratory method", 
      "Bayesian smoothing", 
      "segmentation", 
      "Bayesian smoother", 
      "smoothing", 
      "tracking", 
      "local anomalies", 
      "state-space model", 
      "measurement model", 
      "posterior density", 
      "smoother", 
      "method results", 
      "model", 
      "framework", 
      "method", 
      "step", 
      "data", 
      "extraction", 
      "applications", 
      "detection", 
      "noise", 
      "track", 
      "chest CT scan", 
      "additional branches", 
      "point", 
      "branches", 
      "individual branches", 
      "density estimates", 
      "comprising", 
      "detector", 
      "structure comprising", 
      "structure", 
      "branch states", 
      "state", 
      "results", 
      "analysis", 
      "evolution", 
      "anomalies", 
      "scans", 
      "CT scan", 
      "presented method results", 
      "covariance", 
      "estimates", 
      "neurons", 
      "region", 
      "marginal posterior densities", 
      "density", 
      "vessels", 
      "positive branch", 
      "response", 
      "airway"
    ], 
    "name": "Extraction of Airways with Probabilistic State-Space Models and Bayesian Smoothing", 
    "pagination": "53-63", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091554319"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-67675-3_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-67675-3_6", 
      "https://app.dimensions.ai/details/publication/pub.1091554319"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_153.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-67675-3_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67675-3_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67675-3_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67675-3_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67675-3_6'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      22 PREDICATES      94 URIs      87 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-67675-3_6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N94d4608b6e594864a4f3e4b26be56d30
4 schema:datePublished 2017-09-08
5 schema:datePublishedReg 2017-09-08
6 schema:description Segmenting tree structures is common in several image processing applications. In medical image analysis, reliable segmentations of airways, vessels, neurons and other tree structures can enable important clinical. applications. We present a framework for tracking tree structures comprising of elongated branches using probabilistic state-space models and Bayesian smoothing. Unlike most existing methods that proceed with sequential tracking of branches, we present an exploratory method, that is less sensitive to local anomalies in the data due to acquisition noise and/or interfering structures. The evolution of individual branches is modelled using a process model and the observed data is incorporated into the update step of the Bayesian smoother using a measurement model that is based on a multi-scale blob detector. Bayesian smoothing is performed using the RTS (Rauch-Tung-Striebel) smoother, which provides Gaussian density estimates of branch states at each tracking step. We select likely branch seed points automatically based on the response of the blob detection and track from all such seed points using the RTS smoother. We use covariance of the marginal posterior density estimated for each branch to discriminate false positive and true positive branches. The method is evaluated on 3D chest CT scans to track airways. We show that the presented method results in additional branches compared to a baseline method based on region growing on probability images
7 schema:editor N19049f06229b4b57927975e1e1f92233
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf Na4d8a792007246a0a7630404fdb3cbf8
11 schema:keywords Bayesian smoother
12 Bayesian smoothing
13 CT scan
14 RTS smoother
15 acquisition noise
16 additional branches
17 airway
18 analysis
19 anomalies
20 applications
21 baseline methods
22 blob detection
23 blob detector
24 branch states
25 branches
26 chest CT scan
27 comprising
28 covariance
29 data
30 density
31 density estimates
32 detection
33 detector
34 estimates
35 evolution
36 exploratory method
37 extraction
38 framework
39 image analysis
40 image extraction
41 image processing applications
42 individual branches
43 local anomalies
44 marginal posterior densities
45 measurement model
46 medical image analysis
47 method
48 method results
49 model
50 neurons
51 noise
52 point
53 positive branch
54 posterior density
55 presented method results
56 probabilistic state space model
57 process model
58 processing applications
59 region
60 reliable segmentation
61 response
62 results
63 scans
64 seed points
65 segmentation
66 sequential tracking
67 smoother
68 smoothing
69 state
70 state-space model
71 step
72 structure
73 structure comprising
74 such seed points
75 track
76 tracking
77 tracking step
78 tree structure
79 update step
80 vessels
81 schema:name Extraction of Airways with Probabilistic State-Space Models and Bayesian Smoothing
82 schema:pagination 53-63
83 schema:productId N725f8239fb7d413fbdc4aa85ddadcae1
84 Ndabf321a1a1a4c81a2f93522dc65c53b
85 schema:publisher Nb9f81a76aa5e4746b2d0812fad086349
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091554319
87 https://doi.org/10.1007/978-3-319-67675-3_6
88 schema:sdDatePublished 2022-11-24T21:12
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N3e7fc650776745b5815584a95583f2d5
91 schema:url https://doi.org/10.1007/978-3-319-67675-3_6
92 sgo:license sg:explorer/license/
93 sgo:sdDataset chapters
94 rdf:type schema:Chapter
95 N010159eb053643e0bdf7a661ff7c6c87 schema:familyName Fletcher
96 schema:givenName Tom
97 rdf:type schema:Person
98 N07856118dede4a528afaf5c69f83e44b rdf:first Nc088b39aac64454780bdf6dac9ec69d3
99 rdf:rest Nf21497a864b24fa7a34c3378a54c0697
100 N0b5913ac0f4748e1a7790a1a6ff440ec rdf:first N8c065e7c5a704bd48e422014c5f5fd1d
101 rdf:rest N255a8d0d23664b14a985686cee323591
102 N19049f06229b4b57927975e1e1f92233 rdf:first N61042b5ca21745fab70a60481cca1790
103 rdf:rest N4b032677d6e14ee5bf0aa03ad45d9348
104 N1a9aacc6af0e4929b201b9584060d434 rdf:first sg:person.013733372770.12
105 rdf:rest rdf:nil
106 N227d24392f83488d81331c3819ca6d3b schema:familyName Dalca
107 schema:givenName Adrian V.
108 rdf:type schema:Person
109 N2421f90693c44aedae29b1bb43b83576 schema:familyName Sabuncu
110 schema:givenName Mert R.
111 rdf:type schema:Person
112 N255a8d0d23664b14a985686cee323591 rdf:first N7aa56faf43cc43acb2455cb5a998ad6e
113 rdf:rest N07856118dede4a528afaf5c69f83e44b
114 N3d2ed0eb5d62412283a8705da0f7b170 rdf:first Nfe17704a94214ac39b4c8504c1759b51
115 rdf:rest Nd7b61d76786c4243a113fe91332a5d92
116 N3e7fc650776745b5815584a95583f2d5 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 N43f434fb520b4548bb43200c06f87604 rdf:first N010159eb053643e0bdf7a661ff7c6c87
119 rdf:rest N52a5a4bef15c4e5d9318aef468c2bcbc
120 N4b032677d6e14ee5bf0aa03ad45d9348 rdf:first Nb090e2a80b8b4962a1a88e42b26de68f
121 rdf:rest Ne9500e5d95214c04939ce64fa8a4ba38
122 N52a5a4bef15c4e5d9318aef468c2bcbc rdf:first N78146c0b45ac4159b7a3bab396576e65
123 rdf:rest N62018ad9f366431280aa8a09898b94e2
124 N61042b5ca21745fab70a60481cca1790 schema:familyName Cardoso
125 schema:givenName M. Jorge
126 rdf:type schema:Person
127 N62018ad9f366431280aa8a09898b94e2 rdf:first Nab767931db92414793f2a054f064827e
128 rdf:rest N6e9ceff6f2194d7cbe2b32adf525025e
129 N62570a1155774cbc941ad221833a2241 rdf:first N227d24392f83488d81331c3819ca6d3b
130 rdf:rest N0b5913ac0f4748e1a7790a1a6ff440ec
131 N6b8582b4bdbf475daae732df1fed583f schema:familyName Sommer
132 schema:givenName Stefan
133 rdf:type schema:Person
134 N6e9ceff6f2194d7cbe2b32adf525025e rdf:first N6b8582b4bdbf475daae732df1fed583f
135 rdf:rest rdf:nil
136 N725f8239fb7d413fbdc4aa85ddadcae1 schema:name doi
137 schema:value 10.1007/978-3-319-67675-3_6
138 rdf:type schema:PropertyValue
139 N78146c0b45ac4159b7a3bab396576e65 schema:familyName Shen
140 schema:givenName Li
141 rdf:type schema:Person
142 N7aa56faf43cc43acb2455cb5a998ad6e schema:familyName Joshi
143 schema:givenName Sarang
144 rdf:type schema:Person
145 N8a37a9cc2f2442c1a579d78d92d6221a schema:familyName Sotiras
146 schema:givenName Aristeidis
147 rdf:type schema:Person
148 N8c065e7c5a704bd48e422014c5f5fd1d schema:familyName Parisot
149 schema:givenName Sarah
150 rdf:type schema:Person
151 N94d4608b6e594864a4f3e4b26be56d30 rdf:first sg:person.015077255170.84
152 rdf:rest Nf9b303c8fbcb47088b304d64cd0d1277
153 Na4879c7434764d5196ea7705a2481e12 schema:familyName Pennec
154 schema:givenName Xavier
155 rdf:type schema:Person
156 Na4d8a792007246a0a7630404fdb3cbf8 schema:isbn 978-3-319-67674-6
157 978-3-319-67675-3
158 schema:name Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics
159 rdf:type schema:Book
160 Naa47c994187d43cb89e96b3283b309de schema:familyName Ferrante
161 schema:givenName Enzo
162 rdf:type schema:Person
163 Nab767931db92414793f2a054f064827e schema:familyName Durrleman
164 schema:givenName Stanley
165 rdf:type schema:Person
166 Nb06e5f357d484f5bbbe798f4bc02f7bb rdf:first Na4879c7434764d5196ea7705a2481e12
167 rdf:rest N62570a1155774cbc941ad221833a2241
168 Nb090e2a80b8b4962a1a88e42b26de68f schema:familyName Arbel
169 schema:givenName Tal
170 rdf:type schema:Person
171 Nb9f81a76aa5e4746b2d0812fad086349 schema:name Springer Nature
172 rdf:type schema:Organisation
173 Nc088b39aac64454780bdf6dac9ec69d3 schema:familyName Batmanghelich
174 schema:givenName Nematollah K.
175 rdf:type schema:Person
176 Nd7b61d76786c4243a113fe91332a5d92 rdf:first N2421f90693c44aedae29b1bb43b83576
177 rdf:rest N43f434fb520b4548bb43200c06f87604
178 Ndabf321a1a1a4c81a2f93522dc65c53b schema:name dimensions_id
179 schema:value pub.1091554319
180 rdf:type schema:PropertyValue
181 Ne3fc2ea75c9f43a88423b04be6db79e0 rdf:first sg:person.07725433554.11
182 rdf:rest N1a9aacc6af0e4929b201b9584060d434
183 Ne9500e5d95214c04939ce64fa8a4ba38 rdf:first Naa47c994187d43cb89e96b3283b309de
184 rdf:rest Nb06e5f357d484f5bbbe798f4bc02f7bb
185 Nf21497a864b24fa7a34c3378a54c0697 rdf:first N8a37a9cc2f2442c1a579d78d92d6221a
186 rdf:rest N3d2ed0eb5d62412283a8705da0f7b170
187 Nf9b303c8fbcb47088b304d64cd0d1277 rdf:first sg:person.0621164750.96
188 rdf:rest Ne3fc2ea75c9f43a88423b04be6db79e0
189 Nfe17704a94214ac39b4c8504c1759b51 schema:familyName Nielsen
190 schema:givenName Mads
191 rdf:type schema:Person
192 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
193 schema:name Information and Computing Sciences
194 rdf:type schema:DefinedTerm
195 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
196 schema:name Artificial Intelligence and Image Processing
197 rdf:type schema:DefinedTerm
198 sg:person.013733372770.12 schema:affiliation grid-institutes:grid.5645.2
199 schema:familyName de Bruijne
200 schema:givenName Marleen
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013733372770.12
202 rdf:type schema:Person
203 sg:person.015077255170.84 schema:affiliation grid-institutes:grid.5254.6
204 schema:familyName Selvan
205 schema:givenName Raghavendra
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015077255170.84
207 rdf:type schema:Person
208 sg:person.0621164750.96 schema:affiliation grid-institutes:grid.5254.6
209 schema:familyName Petersen
210 schema:givenName Jens
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621164750.96
212 rdf:type schema:Person
213 sg:person.07725433554.11 schema:affiliation grid-institutes:grid.475435.4
214 schema:familyName Pedersen
215 schema:givenName Jesper H.
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07725433554.11
217 rdf:type schema:Person
218 grid-institutes:grid.475435.4 schema:alternateName Department of Cardio-Thoracic Surgery RT, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
219 schema:name Department of Cardio-Thoracic Surgery RT, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
220 rdf:type schema:Organization
221 grid-institutes:grid.5254.6 schema:alternateName Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
222 schema:name Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
223 rdf:type schema:Organization
224 grid-institutes:grid.5645.2 schema:alternateName Departments of Medical Informatics and Radiology, Erasmus MC, Rotterdam, The Netherlands
225 schema:name Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
226 Departments of Medical Informatics and Radiology, Erasmus MC, Rotterdam, The Netherlands
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...