Ontology type: schema:Chapter
2017-09-23
AUTHORSAndrius Lauraitis , Rytis Maskeliūnas
ABSTRACTThis paper introduces a model to forecast functional capacity level for people having disorders such as hand tremors, disturbed balance, involuntary movements, chorea etc. These motor features are very closely related the symptoms occurring for Huntington or Parkinson patients in various stages of the disease. Proposed model is designed by applying one of supervised learning artificial neural network models for data collected with smart phones or tablets. Feed-forward backpropagation (FFBP), feed-forward time delay neural network (FFTDNN), cascade forward backpropagation (CFBP), nonlinear autoregressive exogenous model (NARX), Elman, layer recurrent neural network (RNN) and generalized regression neural network (GRNN) were used in investigation. Moreover, the processes of preparing and labeling data, choosing a learning algorithm, training particular neural network, evaluating and comparing each model performance, making predictions on new data, are described in the paper. More... »
PAGES142-149
Information and Software Technologies
ISBN
978-3-319-67641-8
978-3-319-67642-5
http://scigraph.springernature.com/pub.10.1007/978-3-319-67642-5_12
DOIhttp://dx.doi.org/10.1007/978-3-319-67642-5_12
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1100749287
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Kaunas University of Technology, Kaunas, Lithuania",
"id": "http://www.grid.ac/institutes/grid.6901.e",
"name": [
"Kaunas University of Technology, Kaunas, Lithuania"
],
"type": "Organization"
},
"familyName": "Lauraitis",
"givenName": "Andrius",
"id": "sg:person.010025570470.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010025570470.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Kaunas University of Technology, Kaunas, Lithuania",
"id": "http://www.grid.ac/institutes/grid.6901.e",
"name": [
"Kaunas University of Technology, Kaunas, Lithuania"
],
"type": "Organization"
},
"familyName": "Maskeli\u016bnas",
"givenName": "Rytis",
"id": "sg:person.07601177551.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07601177551.18"
],
"type": "Person"
}
],
"datePublished": "2017-09-23",
"datePublishedReg": "2017-09-23",
"description": "This paper introduces a model to forecast functional capacity level for people having disorders such as hand tremors, disturbed balance, involuntary movements, chorea etc. These motor features are very closely related the symptoms occurring for Huntington or Parkinson patients in various stages of the disease. Proposed model is designed by applying one of supervised learning artificial neural network models for data collected with smart phones or tablets. Feed-forward backpropagation (FFBP), feed-forward time delay neural network (FFTDNN), cascade forward backpropagation (CFBP), nonlinear autoregressive exogenous model (NARX), Elman, layer recurrent neural network (RNN) and generalized regression neural network (GRNN) were used in investigation. Moreover, the processes of preparing and labeling data, choosing a learning algorithm, training particular neural network, evaluating and comparing each model performance, making predictions on new data, are described in the paper.",
"editor": [
{
"familyName": "Dama\u0161evi\u010dius",
"givenName": "Robertas",
"type": "Person"
},
{
"familyName": "Mika\u0161yt\u0117",
"givenName": "Vilma",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-67642-5_12",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-67641-8",
"978-3-319-67642-5"
],
"name": "Information and Software Technologies",
"type": "Book"
},
"keywords": [
"feed-forward time delay neural network",
"recurrent neural network",
"neural network",
"layer recurrent neural network",
"time-delay neural network",
"particular neural networks",
"delay neural network",
"artificial neural network model",
"neural network model",
"regression neural network",
"learning algorithm",
"smart phones",
"autoregressive exogenous model",
"network model",
"functional capacity levels",
"labeling data",
"network",
"backpropagation",
"model performance",
"exogenous model",
"Elman",
"phones",
"algorithm",
"model",
"data",
"new data",
"performance",
"hand tremor",
"features",
"capacity levels",
"prediction",
"Huntington's disease patients",
"tablets",
"process",
"disease patients",
"people",
"motor features",
"involuntary movements",
"Parkinson's patients",
"disturbed balance",
"movement",
"patients",
"stage",
"symptoms",
"levels",
"disease",
"disorders",
"tremor",
"balance",
"Huntington",
"investigation",
"paper"
],
"name": "Investigation of Predicting Functional Capacity Level for Huntington Disease Patients",
"pagination": "142-149",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1100749287"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-67642-5_12"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-67642-5_12",
"https://app.dimensions.ai/details/publication/pub.1100749287"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-08-04T17:21",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/chapter/chapter_45.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-67642-5_12"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67642-5_12'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67642-5_12'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67642-5_12'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67642-5_12'
This table displays all metadata directly associated to this object as RDF triples.
123 TRIPLES
22 PREDICATES
76 URIs
69 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-67642-5_12 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | N54707f0128da42eb8dddd2d76269fa6f |
4 | ″ | schema:datePublished | 2017-09-23 |
5 | ″ | schema:datePublishedReg | 2017-09-23 |
6 | ″ | schema:description | This paper introduces a model to forecast functional capacity level for people having disorders such as hand tremors, disturbed balance, involuntary movements, chorea etc. These motor features are very closely related the symptoms occurring for Huntington or Parkinson patients in various stages of the disease. Proposed model is designed by applying one of supervised learning artificial neural network models for data collected with smart phones or tablets. Feed-forward backpropagation (FFBP), feed-forward time delay neural network (FFTDNN), cascade forward backpropagation (CFBP), nonlinear autoregressive exogenous model (NARX), Elman, layer recurrent neural network (RNN) and generalized regression neural network (GRNN) were used in investigation. Moreover, the processes of preparing and labeling data, choosing a learning algorithm, training particular neural network, evaluating and comparing each model performance, making predictions on new data, are described in the paper. |
7 | ″ | schema:editor | N9f63525cb2d34287b5b1454d51900232 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N806428673b9b454cb26e279dca679121 |
11 | ″ | schema:keywords | Elman |
12 | ″ | ″ | Huntington |
13 | ″ | ″ | Huntington's disease patients |
14 | ″ | ″ | Parkinson's patients |
15 | ″ | ″ | algorithm |
16 | ″ | ″ | artificial neural network model |
17 | ″ | ″ | autoregressive exogenous model |
18 | ″ | ″ | backpropagation |
19 | ″ | ″ | balance |
20 | ″ | ″ | capacity levels |
21 | ″ | ″ | data |
22 | ″ | ″ | delay neural network |
23 | ″ | ″ | disease |
24 | ″ | ″ | disease patients |
25 | ″ | ″ | disorders |
26 | ″ | ″ | disturbed balance |
27 | ″ | ″ | exogenous model |
28 | ″ | ″ | features |
29 | ″ | ″ | feed-forward time delay neural network |
30 | ″ | ″ | functional capacity levels |
31 | ″ | ″ | hand tremor |
32 | ″ | ″ | investigation |
33 | ″ | ″ | involuntary movements |
34 | ″ | ″ | labeling data |
35 | ″ | ″ | layer recurrent neural network |
36 | ″ | ″ | learning algorithm |
37 | ″ | ″ | levels |
38 | ″ | ″ | model |
39 | ″ | ″ | model performance |
40 | ″ | ″ | motor features |
41 | ″ | ″ | movement |
42 | ″ | ″ | network |
43 | ″ | ″ | network model |
44 | ″ | ″ | neural network |
45 | ″ | ″ | neural network model |
46 | ″ | ″ | new data |
47 | ″ | ″ | paper |
48 | ″ | ″ | particular neural networks |
49 | ″ | ″ | patients |
50 | ″ | ″ | people |
51 | ″ | ″ | performance |
52 | ″ | ″ | phones |
53 | ″ | ″ | prediction |
54 | ″ | ″ | process |
55 | ″ | ″ | recurrent neural network |
56 | ″ | ″ | regression neural network |
57 | ″ | ″ | smart phones |
58 | ″ | ″ | stage |
59 | ″ | ″ | symptoms |
60 | ″ | ″ | tablets |
61 | ″ | ″ | time-delay neural network |
62 | ″ | ″ | tremor |
63 | ″ | schema:name | Investigation of Predicting Functional Capacity Level for Huntington Disease Patients |
64 | ″ | schema:pagination | 142-149 |
65 | ″ | schema:productId | Nd626dcbfbc334353bf02236660f713f3 |
66 | ″ | ″ | Ne7913d3c013445fcb87c5ae8e6cbbb8f |
67 | ″ | schema:publisher | Nccb72799360045ea8e6ab1b60a9e7c1f |
68 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1100749287 |
69 | ″ | ″ | https://doi.org/10.1007/978-3-319-67642-5_12 |
70 | ″ | schema:sdDatePublished | 2022-08-04T17:21 |
71 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
72 | ″ | schema:sdPublisher | N41b2d348adf445bbba9799f92c825fb1 |
73 | ″ | schema:url | https://doi.org/10.1007/978-3-319-67642-5_12 |
74 | ″ | sgo:license | sg:explorer/license/ |
75 | ″ | sgo:sdDataset | chapters |
76 | ″ | rdf:type | schema:Chapter |
77 | N41b2d348adf445bbba9799f92c825fb1 | schema:name | Springer Nature - SN SciGraph project |
78 | ″ | rdf:type | schema:Organization |
79 | N497ac0e945924f44a27bcba20307de54 | schema:familyName | Mikašytė |
80 | ″ | schema:givenName | Vilma |
81 | ″ | rdf:type | schema:Person |
82 | N54707f0128da42eb8dddd2d76269fa6f | rdf:first | sg:person.010025570470.18 |
83 | ″ | rdf:rest | Nf1d9d4045e8b4039a0c07f7c4785f786 |
84 | N806428673b9b454cb26e279dca679121 | schema:isbn | 978-3-319-67641-8 |
85 | ″ | ″ | 978-3-319-67642-5 |
86 | ″ | schema:name | Information and Software Technologies |
87 | ″ | rdf:type | schema:Book |
88 | N82861fa3ac544f268318bef248c36031 | schema:familyName | Damaševičius |
89 | ″ | schema:givenName | Robertas |
90 | ″ | rdf:type | schema:Person |
91 | N9f63525cb2d34287b5b1454d51900232 | rdf:first | N82861fa3ac544f268318bef248c36031 |
92 | ″ | rdf:rest | Nbeb5c2ef2bfb4581aac683e036727054 |
93 | Nbeb5c2ef2bfb4581aac683e036727054 | rdf:first | N497ac0e945924f44a27bcba20307de54 |
94 | ″ | rdf:rest | rdf:nil |
95 | Nccb72799360045ea8e6ab1b60a9e7c1f | schema:name | Springer Nature |
96 | ″ | rdf:type | schema:Organisation |
97 | Nd626dcbfbc334353bf02236660f713f3 | schema:name | dimensions_id |
98 | ″ | schema:value | pub.1100749287 |
99 | ″ | rdf:type | schema:PropertyValue |
100 | Ne7913d3c013445fcb87c5ae8e6cbbb8f | schema:name | doi |
101 | ″ | schema:value | 10.1007/978-3-319-67642-5_12 |
102 | ″ | rdf:type | schema:PropertyValue |
103 | Nf1d9d4045e8b4039a0c07f7c4785f786 | rdf:first | sg:person.07601177551.18 |
104 | ″ | rdf:rest | rdf:nil |
105 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Information and Computing Sciences |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
109 | ″ | schema:name | Artificial Intelligence and Image Processing |
110 | ″ | rdf:type | schema:DefinedTerm |
111 | sg:person.010025570470.18 | schema:affiliation | grid-institutes:grid.6901.e |
112 | ″ | schema:familyName | Lauraitis |
113 | ″ | schema:givenName | Andrius |
114 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010025570470.18 |
115 | ″ | rdf:type | schema:Person |
116 | sg:person.07601177551.18 | schema:affiliation | grid-institutes:grid.6901.e |
117 | ″ | schema:familyName | Maskeliūnas |
118 | ″ | schema:givenName | Rytis |
119 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07601177551.18 |
120 | ″ | rdf:type | schema:Person |
121 | grid-institutes:grid.6901.e | schema:alternateName | Kaunas University of Technology, Kaunas, Lithuania |
122 | ″ | schema:name | Kaunas University of Technology, Kaunas, Lithuania |
123 | ″ | rdf:type | schema:Organization |