Temporal Reprogramming of Boolean Networks View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017-09-01

AUTHORS

Hugues Mandon , Stefan Haar , Loïc Paulevé

ABSTRACT

Cellular reprogramming, a technique that opens huge opportunities in modern and regenerative medicine, heavily relies on identifying key genes to perturb. Most of computational methods focus on finding mutations to apply to the initial state in order to control which attractor the cell will reach. However, it has been shown, and is proved in this article, that waiting between the perturbations and using the transient dynamics of the system allow new reprogramming strategies. To identify these temporal perturbations, we consider a qualitative model of regulatory networks, and rely on Petri nets to model their dynamics and the putative perturbations. Our method establishes a complete characterization of temporal perturbations, whether permanent (mutations) or only temporary, to achieve the existential or inevitable reachability of an arbitrary state of the system. We apply a prototype implementation on small models from the literature and show that we are able to derive temporal perturbations to achieve trans-differentiation. More... »

PAGES

179-195

Book

TITLE

Computational Methods in Systems Biology

ISBN

978-3-319-67470-4
978-3-319-67471-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-67471-1_11

DOI

http://dx.doi.org/10.1007/978-3-319-67471-1_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091456269


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Paris-Sud", 
          "id": "https://www.grid.ac/institutes/grid.5842.b", 
          "name": [
            "LSV, ENS Cachan, INRIA, CNRS, Universit\u00e9 Paris-Saclay, Cachan, France", 
            "CNRS, LRI UMR 8623, Univ. Paris-Sud, Universit\u00e9 Paris-Saclay, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mandon", 
        "givenName": "Hugues", 
        "id": "sg:person.016360342021.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016360342021.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire Sp\u00e9cification et V\u00e9rification", 
          "id": "https://www.grid.ac/institutes/grid.464035.0", 
          "name": [
            "LSV, ENS Cachan, INRIA, CNRS, Universit\u00e9 Paris-Saclay, Cachan, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haar", 
        "givenName": "Stefan", 
        "id": "sg:person.015066472515.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015066472515.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Paris-Sud", 
          "id": "https://www.grid.ac/institutes/grid.5842.b", 
          "name": [
            "CNRS, LRI UMR 8623, Univ. Paris-Sud, Universit\u00e9 Paris-Saclay, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paulev\u00e9", 
        "givenName": "Lo\u00efc", 
        "id": "sg:person.012466571463.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012466571463.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrm.2016.8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003181444", 
          "https://doi.org/10.1038/nrm.2016.8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1004571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006130855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-55610-9_177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011482702", 
          "https://doi.org/10.1007/3-540-55610-9_177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fbioe.2014.00086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022608518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1002300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022721908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024611028", 
          "https://doi.org/10.1038/nature08533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024611028", 
          "https://doi.org/10.1038/nature08533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-7-140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025694276", 
          "https://doi.org/10.1186/1752-0509-7-140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11047-010-9178-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030674039", 
          "https://doi.org/10.1007/s11047-010-9178-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/stem.1627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037828010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biosystems.2005.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044043485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biosystems.2005.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044043485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0046798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044363561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1478-3975/9/5/055001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048270157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-3-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049490622", 
          "https://doi.org/10.1186/1752-0509-3-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1004193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052196104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-12982-2_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052705408", 
          "https://doi.org/10.1007/978-3-319-12982-2_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi902202q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052982050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi902202q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052982050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2009.0121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/096636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085113999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/096636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085113999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/096636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085113999"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09-01", 
    "datePublishedReg": "2017-09-01", 
    "description": "Cellular reprogramming, a technique that opens huge opportunities in modern and regenerative medicine, heavily relies on identifying key genes to perturb. Most of computational methods focus on finding mutations to apply to the initial state in order to control which attractor the cell will reach. However, it has been shown, and is proved in this article, that waiting between the perturbations and using the transient dynamics of the system allow new reprogramming strategies. To identify these temporal perturbations, we consider a qualitative model of regulatory networks, and rely on Petri nets to model their dynamics and the putative perturbations. Our method establishes a complete characterization of temporal perturbations, whether permanent (mutations) or only temporary, to achieve the existential or inevitable reachability of an arbitrary state of the system. We apply a prototype implementation on small models from the literature and show that we are able to derive temporal perturbations to achieve trans-differentiation.", 
    "editor": [
      {
        "familyName": "Feret", 
        "givenName": "J\u00e9r\u00f4me", 
        "type": "Person"
      }, 
      {
        "familyName": "Koeppl", 
        "givenName": "Heinz", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-67471-1_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-67470-4", 
        "978-3-319-67471-1"
      ], 
      "name": "Computational Methods in Systems Biology", 
      "type": "Book"
    }, 
    "name": "Temporal Reprogramming of Boolean Networks", 
    "pagination": "179-195", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-67471-1_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a1edda74bbdc23b25d6519599c0c599e0e40d0d0b94e14b459c70ec669697b57"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091456269"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-67471-1_11", 
      "https://app.dimensions.ai/details/publication/pub.1091456269"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100812_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-67471-1_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67471-1_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67471-1_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67471-1_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67471-1_11'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      23 PREDICATES      44 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-67471-1_11 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Nb899b9e974f44516a3d1f43e3f4e5c35
4 schema:citation sg:pub.10.1007/3-540-55610-9_177
5 sg:pub.10.1007/978-3-319-12982-2_10
6 sg:pub.10.1007/s11047-010-9178-0
7 sg:pub.10.1038/nature08533
8 sg:pub.10.1038/nrm.2016.8
9 sg:pub.10.1186/1752-0509-3-1
10 sg:pub.10.1186/1752-0509-7-140
11 https://doi.org/10.1002/stem.1627
12 https://doi.org/10.1016/j.biosystems.2005.10.004
13 https://doi.org/10.1021/bi902202q
14 https://doi.org/10.1088/1478-3975/9/5/055001
15 https://doi.org/10.1089/cmb.2009.0121
16 https://doi.org/10.1101/096636
17 https://doi.org/10.1371/journal.pcbi.1002300
18 https://doi.org/10.1371/journal.pcbi.1004193
19 https://doi.org/10.1371/journal.pcbi.1004571
20 https://doi.org/10.1371/journal.pone.0046798
21 https://doi.org/10.3389/fbioe.2014.00086
22 schema:datePublished 2017-09-01
23 schema:datePublishedReg 2017-09-01
24 schema:description Cellular reprogramming, a technique that opens huge opportunities in modern and regenerative medicine, heavily relies on identifying key genes to perturb. Most of computational methods focus on finding mutations to apply to the initial state in order to control which attractor the cell will reach. However, it has been shown, and is proved in this article, that waiting between the perturbations and using the transient dynamics of the system allow new reprogramming strategies. To identify these temporal perturbations, we consider a qualitative model of regulatory networks, and rely on Petri nets to model their dynamics and the putative perturbations. Our method establishes a complete characterization of temporal perturbations, whether permanent (mutations) or only temporary, to achieve the existential or inevitable reachability of an arbitrary state of the system. We apply a prototype implementation on small models from the literature and show that we are able to derive temporal perturbations to achieve trans-differentiation.
25 schema:editor N0003d8b206cf4e779348892a68d44bc3
26 schema:genre chapter
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf Naf781f3410f04015880365d5bc5a787e
30 schema:name Temporal Reprogramming of Boolean Networks
31 schema:pagination 179-195
32 schema:productId N233dc727b4cd47beb774449db1f5468a
33 N51a72b690f72446cbcb77067556d79bb
34 N5a10a8728c4b4482bdce98119644f629
35 schema:publisher N6415ce1cb0ce46f9a3b19f09d3cfb6e6
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091456269
37 https://doi.org/10.1007/978-3-319-67471-1_11
38 schema:sdDatePublished 2019-04-16T05:02
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Naadf36b955ac44bf8b55a3693581c459
41 schema:url https://link.springer.com/10.1007%2F978-3-319-67471-1_11
42 sgo:license sg:explorer/license/
43 sgo:sdDataset chapters
44 rdf:type schema:Chapter
45 N0003d8b206cf4e779348892a68d44bc3 rdf:first Nd809136699474bfaa15dfb3041c99c89
46 rdf:rest N7eeb46d1f9574abd98ea8d694d2d4054
47 N1c678126092a4fbd8277d201ab63c3f0 rdf:first sg:person.012466571463.31
48 rdf:rest rdf:nil
49 N233dc727b4cd47beb774449db1f5468a schema:name dimensions_id
50 schema:value pub.1091456269
51 rdf:type schema:PropertyValue
52 N4145a4ce7e1f4f7595226feb7a81b86b schema:familyName Koeppl
53 schema:givenName Heinz
54 rdf:type schema:Person
55 N51a72b690f72446cbcb77067556d79bb schema:name readcube_id
56 schema:value a1edda74bbdc23b25d6519599c0c599e0e40d0d0b94e14b459c70ec669697b57
57 rdf:type schema:PropertyValue
58 N5a10a8728c4b4482bdce98119644f629 schema:name doi
59 schema:value 10.1007/978-3-319-67471-1_11
60 rdf:type schema:PropertyValue
61 N6024de4c71b8430ab31c86460941ec0d rdf:first sg:person.015066472515.27
62 rdf:rest N1c678126092a4fbd8277d201ab63c3f0
63 N6415ce1cb0ce46f9a3b19f09d3cfb6e6 schema:location Cham
64 schema:name Springer International Publishing
65 rdf:type schema:Organisation
66 N7eeb46d1f9574abd98ea8d694d2d4054 rdf:first N4145a4ce7e1f4f7595226feb7a81b86b
67 rdf:rest rdf:nil
68 Naadf36b955ac44bf8b55a3693581c459 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Naf781f3410f04015880365d5bc5a787e schema:isbn 978-3-319-67470-4
71 978-3-319-67471-1
72 schema:name Computational Methods in Systems Biology
73 rdf:type schema:Book
74 Nb899b9e974f44516a3d1f43e3f4e5c35 rdf:first sg:person.016360342021.05
75 rdf:rest N6024de4c71b8430ab31c86460941ec0d
76 Nd809136699474bfaa15dfb3041c99c89 schema:familyName Feret
77 schema:givenName Jérôme
78 rdf:type schema:Person
79 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
80 schema:name Biological Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
83 schema:name Biochemistry and Cell Biology
84 rdf:type schema:DefinedTerm
85 sg:person.012466571463.31 schema:affiliation https://www.grid.ac/institutes/grid.5842.b
86 schema:familyName Paulevé
87 schema:givenName Loïc
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012466571463.31
89 rdf:type schema:Person
90 sg:person.015066472515.27 schema:affiliation https://www.grid.ac/institutes/grid.464035.0
91 schema:familyName Haar
92 schema:givenName Stefan
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015066472515.27
94 rdf:type schema:Person
95 sg:person.016360342021.05 schema:affiliation https://www.grid.ac/institutes/grid.5842.b
96 schema:familyName Mandon
97 schema:givenName Hugues
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016360342021.05
99 rdf:type schema:Person
100 sg:pub.10.1007/3-540-55610-9_177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011482702
101 https://doi.org/10.1007/3-540-55610-9_177
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/978-3-319-12982-2_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052705408
104 https://doi.org/10.1007/978-3-319-12982-2_10
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s11047-010-9178-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030674039
107 https://doi.org/10.1007/s11047-010-9178-0
108 rdf:type schema:CreativeWork
109 sg:pub.10.1038/nature08533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024611028
110 https://doi.org/10.1038/nature08533
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/nrm.2016.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003181444
113 https://doi.org/10.1038/nrm.2016.8
114 rdf:type schema:CreativeWork
115 sg:pub.10.1186/1752-0509-3-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049490622
116 https://doi.org/10.1186/1752-0509-3-1
117 rdf:type schema:CreativeWork
118 sg:pub.10.1186/1752-0509-7-140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025694276
119 https://doi.org/10.1186/1752-0509-7-140
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/stem.1627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037828010
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.biosystems.2005.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044043485
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1021/bi902202q schema:sameAs https://app.dimensions.ai/details/publication/pub.1052982050
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1088/1478-3975/9/5/055001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048270157
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1089/cmb.2009.0121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245843
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1101/096636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085113999
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1371/journal.pcbi.1002300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022721908
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1371/journal.pcbi.1004193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052196104
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1371/journal.pcbi.1004571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006130855
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1371/journal.pone.0046798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044363561
140 rdf:type schema:CreativeWork
141 https://doi.org/10.3389/fbioe.2014.00086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022608518
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.464035.0 schema:alternateName Laboratoire Spécification et Vérification
144 schema:name LSV, ENS Cachan, INRIA, CNRS, Université Paris-Saclay, Cachan, France
145 rdf:type schema:Organization
146 https://www.grid.ac/institutes/grid.5842.b schema:alternateName University of Paris-Sud
147 schema:name CNRS, LRI UMR 8623, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
148 LSV, ENS Cachan, INRIA, CNRS, Université Paris-Saclay, Cachan, France
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...