Illegal Activity Categorisation in DarkNet Based on Image Classification Using CREIC Method View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Eduardo Fidalgo , Enrique Alegre , Victor González-Castro , Laura Fernández-Robles

ABSTRACT

The TOR Project allows the publication of content anonymously, which cause the proliferation of illegal material whose authorship is almost impossible to identify. In this paper, we present and make publicly available TOIC (TOr Image Categories), an image dataset which comprises five different illegal classes based on crawled TOR addresses. To classify those images we used Edge-SIFT features jointly with dense SIFT descriptors obtained from an “edge image” calculated with the Compass Operator. We demonstrate how a Bag of Visual Words model trained with the early fusion of dense SIFT and Edge-SIFT features can create an efficient model to detect and categorise illegal content in TOR network. Then, we estimated the radius for a complete dataset before the Edge-SIFT calculation, and we demonstrate that the classification performance is higher when the most salient edge information is extracted from the edges. We tested our proposal in both TOIC and in the public dataset Butterflies to prove the consistency of the method, obtaining an accuracy increase of 2.32 and 7.00 points respectively. We obtained with the Ideal Radius Selection an accuracy of 92.49% on TOIC dataset which makes this approach an attractive tool to detect and categorise illegal content in TOR network. More... »

PAGES

600-609

References to SciGraph publications

  • 2004-11. Distinctive Image Features from Scale-Invariant Keypoints in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 1999-06. Least Squares Support Vector Machine Classifiers in NEURAL PROCESSING LETTERS
  • 2006. Coloring Local Feature Extraction in COMPUTER VISION – ECCV 2006
  • 1995. The Nature of Statistical Learning Theory in NONE
  • Book

    TITLE

    International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding

    ISBN

    978-3-319-67179-6
    978-3-319-67180-2

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-67180-2_58

    DOI

    http://dx.doi.org/10.1007/978-3-319-67180-2_58

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091291908


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Leon", 
              "id": "https://www.grid.ac/institutes/grid.4807.b", 
              "name": [
                "University of Le\u00f3n", 
                "Researcher at INCIBE (Spanish National Institute of Cybersecurity)"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fidalgo", 
            "givenName": "Eduardo", 
            "id": "sg:person.012664070017.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012664070017.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Leon", 
              "id": "https://www.grid.ac/institutes/grid.4807.b", 
              "name": [
                "University of Le\u00f3n", 
                "Researcher at INCIBE (Spanish National Institute of Cybersecurity)"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alegre", 
            "givenName": "Enrique", 
            "id": "sg:person.016266057305.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266057305.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Leon", 
              "id": "https://www.grid.ac/institutes/grid.4807.b", 
              "name": [
                "University of Le\u00f3n", 
                "Researcher at INCIBE (Spanish National Institute of Cybersecurity)"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gonz\u00e1lez-Castro", 
            "givenName": "Victor", 
            "id": "sg:person.010551001361.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010551001361.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Leon", 
              "id": "https://www.grid.ac/institutes/grid.4807.b", 
              "name": [
                "Researcher at INCIBE (Spanish National Institute of Cybersecurity)", 
                "University of Le\u00f3n"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fern\u00e1ndez-Robles", 
            "givenName": "Laura", 
            "id": "sg:person.010415303037.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010415303037.45"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/1961189.1961199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013637525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1873951.1874249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013699282"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2016.02.045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019654874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1018628609742", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025353016", 
              "https://doi.org/10.1023/a:1018628609742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2440-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027312764", 
              "https://doi.org/10.1007/978-1-4757-2440-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2440-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027312764", 
              "https://doi.org/10.1007/978-1-4757-2440-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11744047_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032724317", 
              "https://doi.org/10.1007/11744047_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11744047_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032724317", 
              "https://doi.org/10.1007/11744047_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2012.89", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039174901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00396338.2016.1142085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047006746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:visi.0000029664.99615.94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052687286", 
              "https://doi.org/10.1023/b:visi.0000029664.99615.94"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2014.2310117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061643896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.1982.1056489", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061648677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2007.70716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2009.154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2008.4587630", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094626171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.1999.784624", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094910538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18653/v1/e17-1004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096026241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5244/c.18.98", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099382684"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018", 
        "datePublishedReg": "2018-01-01", 
        "description": "The TOR Project allows the publication of content anonymously, which cause the proliferation of illegal material whose authorship is almost impossible to identify. In this paper, we present and make publicly available TOIC (TOr Image Categories), an image dataset which comprises five different illegal classes based on crawled TOR addresses. To classify those images we used Edge-SIFT features jointly with dense SIFT descriptors obtained from an \u201cedge image\u201d calculated with the Compass Operator. We demonstrate how a Bag of Visual Words model trained with the early fusion of dense SIFT and Edge-SIFT features can create an efficient model to detect and categorise illegal content in TOR network. Then, we estimated the radius for a complete dataset before the Edge-SIFT calculation, and we demonstrate that the classification performance is higher when the most salient edge information is extracted from the edges. We tested our proposal in both TOIC and in the public dataset Butterflies to prove the consistency of the method, obtaining an accuracy increase of 2.32 and 7.00 points respectively. We obtained with the Ideal Radius Selection an accuracy of 92.49% on TOIC dataset which makes this approach an attractive tool to detect and categorise illegal content in TOR network.", 
        "editor": [
          {
            "familyName": "P\u00e9rez Garc\u00eda", 
            "givenName": "Hilde", 
            "type": "Person"
          }, 
          {
            "familyName": "Alfonso-Cend\u00f3n", 
            "givenName": "Javier", 
            "type": "Person"
          }, 
          {
            "familyName": "S\u00e1nchez Gonz\u00e1lez", 
            "givenName": "Lidia", 
            "type": "Person"
          }, 
          {
            "familyName": "Quinti\u00e1n", 
            "givenName": "H\u00e9ctor", 
            "type": "Person"
          }, 
          {
            "familyName": "Corchado", 
            "givenName": "Emilio", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-67180-2_58", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-67179-6", 
            "978-3-319-67180-2"
          ], 
          "name": "International Joint Conference SOCO\u201917-CISIS\u201917-ICEUTE\u201917 Le\u00f3n, Spain, September 6\u20138, 2017, Proceeding", 
          "type": "Book"
        }, 
        "name": "Illegal Activity Categorisation in DarkNet Based on Image Classification Using CREIC Method", 
        "pagination": "600-609", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-67180-2_58"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b337c8aeda63010811c5851d6d83a47501968135eb3a1213f72e10cdcf02a8c3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091291908"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-67180-2_58", 
          "https://app.dimensions.ai/details/publication/pub.1091291908"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T12:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000601.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-67180-2_58"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67180-2_58'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67180-2_58'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67180-2_58'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67180-2_58'


     

    This table displays all metadata directly associated to this object as RDF triples.

    162 TRIPLES      23 PREDICATES      44 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-67180-2_58 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N0e92ef6f268d40aebdf1aac6ff8fa413
    4 schema:citation sg:pub.10.1007/11744047_26
    5 sg:pub.10.1007/978-1-4757-2440-0
    6 sg:pub.10.1023/a:1018628609742
    7 sg:pub.10.1023/b:visi.0000029664.99615.94
    8 https://doi.org/10.1016/j.neucom.2016.02.045
    9 https://doi.org/10.1080/00396338.2016.1142085
    10 https://doi.org/10.1109/cvpr.1999.784624
    11 https://doi.org/10.1109/cvpr.2008.4587630
    12 https://doi.org/10.1109/tip.2014.2310117
    13 https://doi.org/10.1109/tit.1982.1056489
    14 https://doi.org/10.1109/tpami.2007.70716
    15 https://doi.org/10.1109/tpami.2009.154
    16 https://doi.org/10.1109/tpami.2012.89
    17 https://doi.org/10.1145/1873951.1874249
    18 https://doi.org/10.1145/1961189.1961199
    19 https://doi.org/10.18653/v1/e17-1004
    20 https://doi.org/10.5244/c.18.98
    21 schema:datePublished 2018
    22 schema:datePublishedReg 2018-01-01
    23 schema:description The TOR Project allows the publication of content anonymously, which cause the proliferation of illegal material whose authorship is almost impossible to identify. In this paper, we present and make publicly available TOIC (TOr Image Categories), an image dataset which comprises five different illegal classes based on crawled TOR addresses. To classify those images we used Edge-SIFT features jointly with dense SIFT descriptors obtained from an “edge image” calculated with the Compass Operator. We demonstrate how a Bag of Visual Words model trained with the early fusion of dense SIFT and Edge-SIFT features can create an efficient model to detect and categorise illegal content in TOR network. Then, we estimated the radius for a complete dataset before the Edge-SIFT calculation, and we demonstrate that the classification performance is higher when the most salient edge information is extracted from the edges. We tested our proposal in both TOIC and in the public dataset Butterflies to prove the consistency of the method, obtaining an accuracy increase of 2.32 and 7.00 points respectively. We obtained with the Ideal Radius Selection an accuracy of 92.49% on TOIC dataset which makes this approach an attractive tool to detect and categorise illegal content in TOR network.
    24 schema:editor N2f94a76a6fef49f7ae89c6a3da98e87f
    25 schema:genre chapter
    26 schema:inLanguage en
    27 schema:isAccessibleForFree false
    28 schema:isPartOf N690fbe54e4fc4b72813cfc04ef101a8e
    29 schema:name Illegal Activity Categorisation in DarkNet Based on Image Classification Using CREIC Method
    30 schema:pagination 600-609
    31 schema:productId N220f4fae05fa4beca7425626eac6aace
    32 Nbf2b7bbbcc174b498e6ffd7adda6b3e0
    33 Nef14e7ca097e440eb680068a2ed97335
    34 schema:publisher Ne193b75a513a4668a162eae2bdb7cd85
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091291908
    36 https://doi.org/10.1007/978-3-319-67180-2_58
    37 schema:sdDatePublished 2019-04-15T12:13
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher N2d987001ac33472a9b85262df8f8ea76
    40 schema:url http://link.springer.com/10.1007/978-3-319-67180-2_58
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset chapters
    43 rdf:type schema:Chapter
    44 N0e92ef6f268d40aebdf1aac6ff8fa413 rdf:first sg:person.012664070017.21
    45 rdf:rest N352123f581044148bf630b700f5aebd3
    46 N20573bdcbec74af688515302499a44ec schema:familyName Corchado
    47 schema:givenName Emilio
    48 rdf:type schema:Person
    49 N220f4fae05fa4beca7425626eac6aace schema:name dimensions_id
    50 schema:value pub.1091291908
    51 rdf:type schema:PropertyValue
    52 N2d987001ac33472a9b85262df8f8ea76 schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 N2e0844f687d448f3b1f0858a05d9655c schema:familyName Sánchez González
    55 schema:givenName Lidia
    56 rdf:type schema:Person
    57 N2f94a76a6fef49f7ae89c6a3da98e87f rdf:first N44828991687c4dff933841c38e85fad0
    58 rdf:rest N6e59aedfd2f0443bbb01c670257ca92a
    59 N352123f581044148bf630b700f5aebd3 rdf:first sg:person.016266057305.75
    60 rdf:rest Nbf087092b02e4c5aad3031bc7b6c73d6
    61 N44828991687c4dff933841c38e85fad0 schema:familyName Pérez García
    62 schema:givenName Hilde
    63 rdf:type schema:Person
    64 N5e28afd7bbae4dc3940d035ff0d634c5 schema:familyName Quintián
    65 schema:givenName Héctor
    66 rdf:type schema:Person
    67 N690fbe54e4fc4b72813cfc04ef101a8e schema:isbn 978-3-319-67179-6
    68 978-3-319-67180-2
    69 schema:name International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding
    70 rdf:type schema:Book
    71 N6e59aedfd2f0443bbb01c670257ca92a rdf:first Nbd9d6d9993954dd7a99fe1890aa7ad3c
    72 rdf:rest N7cd14d85cce94fb68564db043a00d8eb
    73 N7cd14d85cce94fb68564db043a00d8eb rdf:first N2e0844f687d448f3b1f0858a05d9655c
    74 rdf:rest N897eae80d01e4544a66e1b0ecfc160aa
    75 N7fa31db05f364960bd9d6ebdb07d90f5 rdf:first N20573bdcbec74af688515302499a44ec
    76 rdf:rest rdf:nil
    77 N897eae80d01e4544a66e1b0ecfc160aa rdf:first N5e28afd7bbae4dc3940d035ff0d634c5
    78 rdf:rest N7fa31db05f364960bd9d6ebdb07d90f5
    79 Nbd9d6d9993954dd7a99fe1890aa7ad3c schema:familyName Alfonso-Cendón
    80 schema:givenName Javier
    81 rdf:type schema:Person
    82 Nbf087092b02e4c5aad3031bc7b6c73d6 rdf:first sg:person.010551001361.75
    83 rdf:rest Nefc98be2c16f42bdbb7416a8a758f412
    84 Nbf2b7bbbcc174b498e6ffd7adda6b3e0 schema:name readcube_id
    85 schema:value b337c8aeda63010811c5851d6d83a47501968135eb3a1213f72e10cdcf02a8c3
    86 rdf:type schema:PropertyValue
    87 Ne193b75a513a4668a162eae2bdb7cd85 schema:location Cham
    88 schema:name Springer International Publishing
    89 rdf:type schema:Organisation
    90 Nef14e7ca097e440eb680068a2ed97335 schema:name doi
    91 schema:value 10.1007/978-3-319-67180-2_58
    92 rdf:type schema:PropertyValue
    93 Nefc98be2c16f42bdbb7416a8a758f412 rdf:first sg:person.010415303037.45
    94 rdf:rest rdf:nil
    95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Information and Computing Sciences
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Artificial Intelligence and Image Processing
    100 rdf:type schema:DefinedTerm
    101 sg:person.010415303037.45 schema:affiliation https://www.grid.ac/institutes/grid.4807.b
    102 schema:familyName Fernández-Robles
    103 schema:givenName Laura
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010415303037.45
    105 rdf:type schema:Person
    106 sg:person.010551001361.75 schema:affiliation https://www.grid.ac/institutes/grid.4807.b
    107 schema:familyName González-Castro
    108 schema:givenName Victor
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010551001361.75
    110 rdf:type schema:Person
    111 sg:person.012664070017.21 schema:affiliation https://www.grid.ac/institutes/grid.4807.b
    112 schema:familyName Fidalgo
    113 schema:givenName Eduardo
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012664070017.21
    115 rdf:type schema:Person
    116 sg:person.016266057305.75 schema:affiliation https://www.grid.ac/institutes/grid.4807.b
    117 schema:familyName Alegre
    118 schema:givenName Enrique
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266057305.75
    120 rdf:type schema:Person
    121 sg:pub.10.1007/11744047_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032724317
    122 https://doi.org/10.1007/11744047_26
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
    125 https://doi.org/10.1007/978-1-4757-2440-0
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1023/a:1018628609742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025353016
    128 https://doi.org/10.1023/a:1018628609742
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1023/b:visi.0000029664.99615.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052687286
    131 https://doi.org/10.1023/b:visi.0000029664.99615.94
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.neucom.2016.02.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019654874
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1080/00396338.2016.1142085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047006746
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1109/cvpr.1999.784624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094910538
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/cvpr.2008.4587630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094626171
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1109/tip.2014.2310117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643896
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1109/tit.1982.1056489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061648677
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1109/tpami.2007.70716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743364
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1109/tpami.2009.154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743736
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1109/tpami.2012.89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039174901
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1145/1873951.1874249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013699282
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1145/1961189.1961199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013637525
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.18653/v1/e17-1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096026241
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.5244/c.18.98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099382684
    158 rdf:type schema:CreativeWork
    159 https://www.grid.ac/institutes/grid.4807.b schema:alternateName University of Leon
    160 schema:name Researcher at INCIBE (Spanish National Institute of Cybersecurity)
    161 University of León
    162 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...