Query Based Object Retrieval Using Neural Codes View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Surajit Saikia , Eduardo Fidalgo , Enrique Alegre , Laura Fernández-Robles

ABSTRACT

The task of retrieving a specific object from an image, which is similar to a query object is one of the critical applications in the computer vision domain. The existing methods fail to return similar objects when the region of interest is not specified correctly in a query image. Furthermore, when the feature vector is large, the retrieval from big collections is usually computationally expensive. In this paper, we propose an object retrieval method, which is based on the neural codes (activations) generated by the last inner-product layer of the Faster R-CNN network demonstrating that it can be used not only for object detection but for retrieval too. To evaluate the method, we have used a subset of ImageNet comprising of images related to indoor scenes, and to speed-up the retrieval, we first process all the images from the dataset and we save information (i.e. neural codes, objects present in the image, confidence scores and bounding box coordinates) corresponding to each detected object. Then, given a query image, the system detects the object present and retrieves its neural codes, which are then used to compute the cosine similarity against saved neural codes. We retrieved objects with high cosine similarity scores, and then we compared it with the results obtained using confidence scores. We showed that our approach takes only 0.534 s to retrieve all the 1454 objects in our test set. More... »

PAGES

513-523

References to SciGraph publications

  • 2015-12. ImageNet Large Scale Visual Recognition Challenge in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2014. Neural Codes for Image Retrieval in COMPUTER VISION – ECCV 2014
  • 2014. Microsoft COCO: Common Objects in Context in COMPUTER VISION – ECCV 2014
  • Book

    TITLE

    International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding

    ISBN

    978-3-319-67179-6
    978-3-319-67180-2

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-67180-2_50

    DOI

    http://dx.doi.org/10.1007/978-3-319-67180-2_50

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091287479


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Leon", 
              "id": "https://www.grid.ac/institutes/grid.4807.b", 
              "name": [
                "University of Le\u00f3n", 
                "Researcher at INCIBE (Spanish National Cybersecurity Institute)"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saikia", 
            "givenName": "Surajit", 
            "id": "sg:person.013366561121.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013366561121.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Leon", 
              "id": "https://www.grid.ac/institutes/grid.4807.b", 
              "name": [
                "University of Le\u00f3n", 
                "Researcher at INCIBE (Spanish National Cybersecurity Institute)"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fidalgo", 
            "givenName": "Eduardo", 
            "id": "sg:person.012664070017.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012664070017.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Leon", 
              "id": "https://www.grid.ac/institutes/grid.4807.b", 
              "name": [
                "University of Le\u00f3n", 
                "Researcher at INCIBE (Spanish National Cybersecurity Institute)"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alegre", 
            "givenName": "Enrique", 
            "id": "sg:person.016266057305.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266057305.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Leon", 
              "id": "https://www.grid.ac/institutes/grid.4807.b", 
              "name": [
                "Researcher at INCIBE (Spanish National Cybersecurity Institute)", 
                "University of Le\u00f3n"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fern\u00e1ndez-Robles", 
            "givenName": "Laura", 
            "id": "sg:person.010415303037.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010415303037.45"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/1553374.1553453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-015-0816-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009767488", 
              "https://doi.org/10.1007/s11263-015-0816-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-10602-1_48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045321436", 
              "https://doi.org/10.1007/978-3-319-10602-1_48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2647868.2654889", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052031051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-10590-1_38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052242190", 
              "https://doi.org/10.1007/978-3-319-10590-1_38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2016.2577031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061745117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3065386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085642448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3065386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085642448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2015.7298594", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094291017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2014.81", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094727707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/compcomm.2016.7924779", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094900377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/dicta.2016.7797026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095295523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2015.169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095573598"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018", 
        "datePublishedReg": "2018-01-01", 
        "description": "The task of retrieving a specific object from an image, which is similar to a query object is one of the critical applications in the computer vision domain. The existing methods fail to return similar objects when the region of interest is not specified correctly in a query image. Furthermore, when the feature vector is large, the retrieval from big collections is usually computationally expensive. In this paper, we propose an object retrieval method, which is based on the neural codes (activations) generated by the last inner-product layer of the Faster R-CNN network demonstrating that it can be used not only for object detection but for retrieval too. To evaluate the method, we have used a subset of ImageNet comprising of images related to indoor scenes, and to speed-up the retrieval, we first process all the images from the dataset and we save information (i.e. neural codes, objects present in the image, confidence scores and bounding box coordinates) corresponding to each detected object. Then, given a query image, the system detects the object present and retrieves its neural codes, which are then used to compute the cosine similarity against saved neural codes. We retrieved objects with high cosine similarity scores, and then we compared it with the results obtained using confidence scores. We showed that our approach takes only 0.534 s to retrieve all the 1454 objects in our test set.", 
        "editor": [
          {
            "familyName": "P\u00e9rez Garc\u00eda", 
            "givenName": "Hilde", 
            "type": "Person"
          }, 
          {
            "familyName": "Alfonso-Cend\u00f3n", 
            "givenName": "Javier", 
            "type": "Person"
          }, 
          {
            "familyName": "S\u00e1nchez Gonz\u00e1lez", 
            "givenName": "Lidia", 
            "type": "Person"
          }, 
          {
            "familyName": "Quinti\u00e1n", 
            "givenName": "H\u00e9ctor", 
            "type": "Person"
          }, 
          {
            "familyName": "Corchado", 
            "givenName": "Emilio", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-67180-2_50", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-67179-6", 
            "978-3-319-67180-2"
          ], 
          "name": "International Joint Conference SOCO\u201917-CISIS\u201917-ICEUTE\u201917 Le\u00f3n, Spain, September 6\u20138, 2017, Proceeding", 
          "type": "Book"
        }, 
        "name": "Query Based Object Retrieval Using Neural\u00a0Codes", 
        "pagination": "513-523", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-67180-2_50"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "571f10297ca8438a08c534e7e6ae87a374aa5bb052178caee121019c883e181d"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091287479"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-67180-2_50", 
          "https://app.dimensions.ai/details/publication/pub.1091287479"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T19:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000280.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-67180-2_50"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67180-2_50'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67180-2_50'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67180-2_50'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-67180-2_50'


     

    This table displays all metadata directly associated to this object as RDF triples.

    146 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-67180-2_50 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N4d0d4b4cdf6b423d8dec66100dbfb65f
    4 schema:citation sg:pub.10.1007/978-3-319-10590-1_38
    5 sg:pub.10.1007/978-3-319-10602-1_48
    6 sg:pub.10.1007/s11263-015-0816-y
    7 https://doi.org/10.1109/compcomm.2016.7924779
    8 https://doi.org/10.1109/cvpr.2014.81
    9 https://doi.org/10.1109/cvpr.2015.7298594
    10 https://doi.org/10.1109/dicta.2016.7797026
    11 https://doi.org/10.1109/iccv.2015.169
    12 https://doi.org/10.1109/tpami.2016.2577031
    13 https://doi.org/10.1145/1553374.1553453
    14 https://doi.org/10.1145/2647868.2654889
    15 https://doi.org/10.1145/3065386
    16 schema:datePublished 2018
    17 schema:datePublishedReg 2018-01-01
    18 schema:description The task of retrieving a specific object from an image, which is similar to a query object is one of the critical applications in the computer vision domain. The existing methods fail to return similar objects when the region of interest is not specified correctly in a query image. Furthermore, when the feature vector is large, the retrieval from big collections is usually computationally expensive. In this paper, we propose an object retrieval method, which is based on the neural codes (activations) generated by the last inner-product layer of the Faster R-CNN network demonstrating that it can be used not only for object detection but for retrieval too. To evaluate the method, we have used a subset of ImageNet comprising of images related to indoor scenes, and to speed-up the retrieval, we first process all the images from the dataset and we save information (i.e. neural codes, objects present in the image, confidence scores and bounding box coordinates) corresponding to each detected object. Then, given a query image, the system detects the object present and retrieves its neural codes, which are then used to compute the cosine similarity against saved neural codes. We retrieved objects with high cosine similarity scores, and then we compared it with the results obtained using confidence scores. We showed that our approach takes only 0.534 s to retrieve all the 1454 objects in our test set.
    19 schema:editor N94225acf78f2449898962b33373965ea
    20 schema:genre chapter
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N610a2cb70fad433189f4fbdb0d0ff33a
    24 schema:name Query Based Object Retrieval Using Neural Codes
    25 schema:pagination 513-523
    26 schema:productId Nb0843999716945078f0a73e3fb9e8ae0
    27 Nd8d0254f941a4a229e0407d688a5185a
    28 Ne20d813444d24091919d41d01c89926c
    29 schema:publisher N1a664adeb7a4433e9518dc2c96129807
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091287479
    31 https://doi.org/10.1007/978-3-319-67180-2_50
    32 schema:sdDatePublished 2019-04-15T19:13
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher Ne1d0eb3379fb4ccba741b2c91eeb31bd
    35 schema:url http://link.springer.com/10.1007/978-3-319-67180-2_50
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset chapters
    38 rdf:type schema:Chapter
    39 N0e38a1354dd441969adfb2444974352e schema:familyName Corchado
    40 schema:givenName Emilio
    41 rdf:type schema:Person
    42 N15f957f9feea47bdbbda7734277300f2 rdf:first sg:person.010415303037.45
    43 rdf:rest rdf:nil
    44 N1a664adeb7a4433e9518dc2c96129807 schema:location Cham
    45 schema:name Springer International Publishing
    46 rdf:type schema:Organisation
    47 N1aa8607a86c54ae48f89a0ea2daa382e rdf:first sg:person.012664070017.21
    48 rdf:rest Nfed16cad63a341f1beba929fd3e880ca
    49 N2b3a6dea042d48708e9413a20910849f schema:familyName Quintián
    50 schema:givenName Héctor
    51 rdf:type schema:Person
    52 N36a5296073c54557bf2e793422e84299 schema:familyName Sánchez González
    53 schema:givenName Lidia
    54 rdf:type schema:Person
    55 N4d0d4b4cdf6b423d8dec66100dbfb65f rdf:first sg:person.013366561121.26
    56 rdf:rest N1aa8607a86c54ae48f89a0ea2daa382e
    57 N5b8f7b75f4f54cf6baf05796ab3e4ae8 rdf:first N8182eb2a650e4afe9f834114763e4e80
    58 rdf:rest Ne6a62f7a5337438b952681de4ad2e164
    59 N610a2cb70fad433189f4fbdb0d0ff33a schema:isbn 978-3-319-67179-6
    60 978-3-319-67180-2
    61 schema:name International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding
    62 rdf:type schema:Book
    63 N8182eb2a650e4afe9f834114763e4e80 schema:familyName Alfonso-Cendón
    64 schema:givenName Javier
    65 rdf:type schema:Person
    66 N837789b0d8eb4b8c97301811cc500a8e schema:familyName Pérez García
    67 schema:givenName Hilde
    68 rdf:type schema:Person
    69 N94225acf78f2449898962b33373965ea rdf:first N837789b0d8eb4b8c97301811cc500a8e
    70 rdf:rest N5b8f7b75f4f54cf6baf05796ab3e4ae8
    71 Nb0843999716945078f0a73e3fb9e8ae0 schema:name readcube_id
    72 schema:value 571f10297ca8438a08c534e7e6ae87a374aa5bb052178caee121019c883e181d
    73 rdf:type schema:PropertyValue
    74 Nc71ea7d9612246759ee6dfe6e82db581 rdf:first N2b3a6dea042d48708e9413a20910849f
    75 rdf:rest Ndbfd9be611074626b786cc47de45481c
    76 Nd8d0254f941a4a229e0407d688a5185a schema:name dimensions_id
    77 schema:value pub.1091287479
    78 rdf:type schema:PropertyValue
    79 Ndbfd9be611074626b786cc47de45481c rdf:first N0e38a1354dd441969adfb2444974352e
    80 rdf:rest rdf:nil
    81 Ne1d0eb3379fb4ccba741b2c91eeb31bd schema:name Springer Nature - SN SciGraph project
    82 rdf:type schema:Organization
    83 Ne20d813444d24091919d41d01c89926c schema:name doi
    84 schema:value 10.1007/978-3-319-67180-2_50
    85 rdf:type schema:PropertyValue
    86 Ne6a62f7a5337438b952681de4ad2e164 rdf:first N36a5296073c54557bf2e793422e84299
    87 rdf:rest Nc71ea7d9612246759ee6dfe6e82db581
    88 Nfed16cad63a341f1beba929fd3e880ca rdf:first sg:person.016266057305.75
    89 rdf:rest N15f957f9feea47bdbbda7734277300f2
    90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Information and Computing Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Artificial Intelligence and Image Processing
    95 rdf:type schema:DefinedTerm
    96 sg:person.010415303037.45 schema:affiliation https://www.grid.ac/institutes/grid.4807.b
    97 schema:familyName Fernández-Robles
    98 schema:givenName Laura
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010415303037.45
    100 rdf:type schema:Person
    101 sg:person.012664070017.21 schema:affiliation https://www.grid.ac/institutes/grid.4807.b
    102 schema:familyName Fidalgo
    103 schema:givenName Eduardo
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012664070017.21
    105 rdf:type schema:Person
    106 sg:person.013366561121.26 schema:affiliation https://www.grid.ac/institutes/grid.4807.b
    107 schema:familyName Saikia
    108 schema:givenName Surajit
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013366561121.26
    110 rdf:type schema:Person
    111 sg:person.016266057305.75 schema:affiliation https://www.grid.ac/institutes/grid.4807.b
    112 schema:familyName Alegre
    113 schema:givenName Enrique
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266057305.75
    115 rdf:type schema:Person
    116 sg:pub.10.1007/978-3-319-10590-1_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052242190
    117 https://doi.org/10.1007/978-3-319-10590-1_38
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/978-3-319-10602-1_48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045321436
    120 https://doi.org/10.1007/978-3-319-10602-1_48
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/s11263-015-0816-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009767488
    123 https://doi.org/10.1007/s11263-015-0816-y
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1109/compcomm.2016.7924779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094900377
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1109/cvpr.2014.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094727707
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1109/cvpr.2015.7298594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094291017
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1109/dicta.2016.7797026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095295523
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1109/iccv.2015.169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095573598
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1109/tpami.2016.2577031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061745117
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1145/1553374.1553453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476131
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1145/2647868.2654889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052031051
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1145/3065386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085642448
    142 rdf:type schema:CreativeWork
    143 https://www.grid.ac/institutes/grid.4807.b schema:alternateName University of Leon
    144 schema:name Researcher at INCIBE (Spanish National Cybersecurity Institute)
    145 University of León
    146 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...