Boundary-Aware Fully Convolutional Network for Brain Tumor Segmentation View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017

AUTHORS

Haocheng Shen , Ruixuan Wang , Jianguo Zhang , Stephen J. McKenna

ABSTRACT

We propose a novel, multi-task, fully convolutional network (FCN) architecture for automatic segmentation of brain tumor. This network extracts multi-level contextual information by concatenating hierarchical feature representations extracted from multimodal MR images along with their symmetric-difference images. It achieves improved segmentation performance by incorporating boundary information directly into the loss function. The proposed method was evaluated on the BRATS13 and BRATS15 datasets and compared with competing methods on the BRATS13 testing set. Segmented tumor boundaries obtained were better than those obtained by single-task FCN and by FCN with CRF. The method is among the most accurate available and has relatively low computational cost at test time. More... »

PAGES

433-441

References to SciGraph publications

  • 2014. Combining Generative Models for Multifocal Glioma Segmentation and Registration in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2014
  • 2016. Gland Instance Segmentation by Deep Multichannel Side Supervision in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2016
  • 2015-04. Optimal Symmetric Multimodal Templates and Concatenated Random Forests for Supervised Brain Tumor Segmentation (Simplified) with ANTsR in NEUROINFORMATICS
  • 2016. Brain Tumor Segmentation Using a Fully Convolutional Neural Network with Conditional Random Fields in BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES
  • 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2015
  • Book

    TITLE

    Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017

    ISBN

    978-3-319-66184-1
    978-3-319-66185-8

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-66185-8_49

    DOI

    http://dx.doi.org/10.1007/978-3-319-66185-8_49

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091428121


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Dundee", 
              "id": "https://www.grid.ac/institutes/grid.8241.f", 
              "name": [
                "University of Dundee"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shen", 
            "givenName": "Haocheng", 
            "id": "sg:person.015556232771.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015556232771.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Dundee", 
              "id": "https://www.grid.ac/institutes/grid.8241.f", 
              "name": [
                "University of Dundee"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Ruixuan", 
            "id": "sg:person.016122614155.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016122614155.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Dundee", 
              "id": "https://www.grid.ac/institutes/grid.8241.f", 
              "name": [
                "University of Dundee"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Jianguo", 
            "id": "sg:person.01243311462.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243311462.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Dundee", 
              "id": "https://www.grid.ac/institutes/grid.8241.f", 
              "name": [
                "University of Dundee"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McKenna", 
            "givenName": "Stephen J.", 
            "id": "sg:person.014634101747.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014634101747.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-10404-1_95", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011999412", 
              "https://doi.org/10.1007/978-3-319-10404-1_95"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2016.10.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013664571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-24574-4_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017774818", 
              "https://doi.org/10.1007/978-3-319-24574-4_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2016.05.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028121501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12021-014-9245-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028330913", 
              "https://doi.org/10.1007/s12021-014-9245-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2014.2377694", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061696449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2016.2538465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061696721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-55524-9_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084740502", 
              "https://doi.org/10.1007/978-3-319-55524-9_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46723-8_57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084920702", 
              "https://doi.org/10.1007/978-3-319-46723-8_57"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2015.7298965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093626237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2015.123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093828312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2015.179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094679398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2016.273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095722054"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017", 
        "datePublishedReg": "2017-01-01", 
        "description": "We propose a novel, multi-task, fully convolutional network (FCN) architecture for automatic segmentation of brain tumor. This network extracts multi-level contextual information by concatenating hierarchical feature representations extracted from multimodal MR images along with their symmetric-difference images. It achieves improved segmentation performance by incorporating boundary information directly into the loss function. The proposed method was evaluated on the BRATS13 and BRATS15 datasets and compared with competing methods on the BRATS13 testing set. Segmented tumor boundaries obtained were better than those obtained by single-task FCN and by FCN with CRF. The method is among the most accurate available and has relatively low computational cost at test time.", 
        "editor": [
          {
            "familyName": "Descoteaux", 
            "givenName": "Maxime", 
            "type": "Person"
          }, 
          {
            "familyName": "Maier-Hein", 
            "givenName": "Lena", 
            "type": "Person"
          }, 
          {
            "familyName": "Franz", 
            "givenName": "Alfred", 
            "type": "Person"
          }, 
          {
            "familyName": "Jannin", 
            "givenName": "Pierre", 
            "type": "Person"
          }, 
          {
            "familyName": "Collins", 
            "givenName": "D. Louis", 
            "type": "Person"
          }, 
          {
            "familyName": "Duchesne", 
            "givenName": "Simon", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-66185-8_49", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-319-66184-1", 
            "978-3-319-66185-8"
          ], 
          "name": "Medical Image Computing and Computer-Assisted Intervention \u2212 MICCAI 2017", 
          "type": "Book"
        }, 
        "name": "Boundary-Aware Fully Convolutional Network for Brain Tumor Segmentation", 
        "pagination": "433-441", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-66185-8_49"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3a9801021eee3894ebb089f04a70000c38454b1ecb638e3091e9a826d1a1c30c"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091428121"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-66185-8_49", 
          "https://app.dimensions.ai/details/publication/pub.1091428121"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T11:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000601.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-66185-8_49"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66185-8_49'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66185-8_49'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66185-8_49'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66185-8_49'


     

    This table displays all metadata directly associated to this object as RDF triples.

    155 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-66185-8_49 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N5a431d1a467d4165a1004a7738e9c843
    4 schema:citation sg:pub.10.1007/978-3-319-10404-1_95
    5 sg:pub.10.1007/978-3-319-24574-4_28
    6 sg:pub.10.1007/978-3-319-46723-8_57
    7 sg:pub.10.1007/978-3-319-55524-9_8
    8 sg:pub.10.1007/s12021-014-9245-2
    9 https://doi.org/10.1016/j.media.2016.05.004
    10 https://doi.org/10.1016/j.media.2016.10.004
    11 https://doi.org/10.1109/cvpr.2015.7298965
    12 https://doi.org/10.1109/cvpr.2016.273
    13 https://doi.org/10.1109/iccv.2015.123
    14 https://doi.org/10.1109/iccv.2015.179
    15 https://doi.org/10.1109/tmi.2014.2377694
    16 https://doi.org/10.1109/tmi.2016.2538465
    17 schema:datePublished 2017
    18 schema:datePublishedReg 2017-01-01
    19 schema:description We propose a novel, multi-task, fully convolutional network (FCN) architecture for automatic segmentation of brain tumor. This network extracts multi-level contextual information by concatenating hierarchical feature representations extracted from multimodal MR images along with their symmetric-difference images. It achieves improved segmentation performance by incorporating boundary information directly into the loss function. The proposed method was evaluated on the BRATS13 and BRATS15 datasets and compared with competing methods on the BRATS13 testing set. Segmented tumor boundaries obtained were better than those obtained by single-task FCN and by FCN with CRF. The method is among the most accurate available and has relatively low computational cost at test time.
    20 schema:editor N532009d5f5e345c58041b5c22abf9585
    21 schema:genre chapter
    22 schema:inLanguage en
    23 schema:isAccessibleForFree true
    24 schema:isPartOf N33c76ec1354c46d7966f7297815b1faa
    25 schema:name Boundary-Aware Fully Convolutional Network for Brain Tumor Segmentation
    26 schema:pagination 433-441
    27 schema:productId N4ab3392d976d41749c3c2c653285a498
    28 N7a0c2341f1da42168f800006c83664d0
    29 Nb1f024b1ce864899b592378509768d0e
    30 schema:publisher N56f7b35e5b5642718fd10c80d8c1a1af
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091428121
    32 https://doi.org/10.1007/978-3-319-66185-8_49
    33 schema:sdDatePublished 2019-04-15T11:14
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher Nf791917243074f63818c6b85a6b38dc1
    36 schema:url http://link.springer.com/10.1007/978-3-319-66185-8_49
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset chapters
    39 rdf:type schema:Chapter
    40 N07e5da11ad564ace80758edc2dbae180 rdf:first N8bd1f36847e847908d0f6edfca5da2f6
    41 rdf:rest N4ee11acfe1f14ce7ab0f171c34cc02f2
    42 N299f4819b2954269991976840b5a7020 schema:familyName Descoteaux
    43 schema:givenName Maxime
    44 rdf:type schema:Person
    45 N33c76ec1354c46d7966f7297815b1faa schema:isbn 978-3-319-66184-1
    46 978-3-319-66185-8
    47 schema:name Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017
    48 rdf:type schema:Book
    49 N376f5efbc9b14a45b5149154b3ce9274 rdf:first N3a49fabe3457441cae88e1b6cd96fe73
    50 rdf:rest rdf:nil
    51 N3a49fabe3457441cae88e1b6cd96fe73 schema:familyName Duchesne
    52 schema:givenName Simon
    53 rdf:type schema:Person
    54 N4ab3392d976d41749c3c2c653285a498 schema:name readcube_id
    55 schema:value 3a9801021eee3894ebb089f04a70000c38454b1ecb638e3091e9a826d1a1c30c
    56 rdf:type schema:PropertyValue
    57 N4ee11acfe1f14ce7ab0f171c34cc02f2 rdf:first Ndca210ccf9b644bcbc0e8f6c85cbd6cb
    58 rdf:rest N376f5efbc9b14a45b5149154b3ce9274
    59 N532009d5f5e345c58041b5c22abf9585 rdf:first N299f4819b2954269991976840b5a7020
    60 rdf:rest Nd43a926c389a42ebb6ff5c277fb04ac5
    61 N56f7b35e5b5642718fd10c80d8c1a1af schema:location Cham
    62 schema:name Springer International Publishing
    63 rdf:type schema:Organisation
    64 N58602e58a80c440080c29ff00f0d5e11 rdf:first N696ce166f48e44a58b7709794cb55996
    65 rdf:rest N07e5da11ad564ace80758edc2dbae180
    66 N5a431d1a467d4165a1004a7738e9c843 rdf:first sg:person.015556232771.50
    67 rdf:rest Nc757ad6f295b471e81441f20ebd74506
    68 N6228059329a0409c8485d127d7b70d9f rdf:first sg:person.014634101747.29
    69 rdf:rest rdf:nil
    70 N696ce166f48e44a58b7709794cb55996 schema:familyName Franz
    71 schema:givenName Alfred
    72 rdf:type schema:Person
    73 N7a0c2341f1da42168f800006c83664d0 schema:name doi
    74 schema:value 10.1007/978-3-319-66185-8_49
    75 rdf:type schema:PropertyValue
    76 N8bd1f36847e847908d0f6edfca5da2f6 schema:familyName Jannin
    77 schema:givenName Pierre
    78 rdf:type schema:Person
    79 Nafe514c6c1a34c8aa5af81bbe874b2ad schema:familyName Maier-Hein
    80 schema:givenName Lena
    81 rdf:type schema:Person
    82 Nb1f024b1ce864899b592378509768d0e schema:name dimensions_id
    83 schema:value pub.1091428121
    84 rdf:type schema:PropertyValue
    85 Nc757ad6f295b471e81441f20ebd74506 rdf:first sg:person.016122614155.75
    86 rdf:rest Nf8225dee769941878157da51065660b3
    87 Nd43a926c389a42ebb6ff5c277fb04ac5 rdf:first Nafe514c6c1a34c8aa5af81bbe874b2ad
    88 rdf:rest N58602e58a80c440080c29ff00f0d5e11
    89 Ndca210ccf9b644bcbc0e8f6c85cbd6cb schema:familyName Collins
    90 schema:givenName D. Louis
    91 rdf:type schema:Person
    92 Nf791917243074f63818c6b85a6b38dc1 schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 Nf8225dee769941878157da51065660b3 rdf:first sg:person.01243311462.17
    95 rdf:rest N6228059329a0409c8485d127d7b70d9f
    96 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Information and Computing Sciences
    98 rdf:type schema:DefinedTerm
    99 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Artificial Intelligence and Image Processing
    101 rdf:type schema:DefinedTerm
    102 sg:person.01243311462.17 schema:affiliation https://www.grid.ac/institutes/grid.8241.f
    103 schema:familyName Zhang
    104 schema:givenName Jianguo
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243311462.17
    106 rdf:type schema:Person
    107 sg:person.014634101747.29 schema:affiliation https://www.grid.ac/institutes/grid.8241.f
    108 schema:familyName McKenna
    109 schema:givenName Stephen J.
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014634101747.29
    111 rdf:type schema:Person
    112 sg:person.015556232771.50 schema:affiliation https://www.grid.ac/institutes/grid.8241.f
    113 schema:familyName Shen
    114 schema:givenName Haocheng
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015556232771.50
    116 rdf:type schema:Person
    117 sg:person.016122614155.75 schema:affiliation https://www.grid.ac/institutes/grid.8241.f
    118 schema:familyName Wang
    119 schema:givenName Ruixuan
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016122614155.75
    121 rdf:type schema:Person
    122 sg:pub.10.1007/978-3-319-10404-1_95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011999412
    123 https://doi.org/10.1007/978-3-319-10404-1_95
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/978-3-319-24574-4_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017774818
    126 https://doi.org/10.1007/978-3-319-24574-4_28
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/978-3-319-46723-8_57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084920702
    129 https://doi.org/10.1007/978-3-319-46723-8_57
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/978-3-319-55524-9_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084740502
    132 https://doi.org/10.1007/978-3-319-55524-9_8
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s12021-014-9245-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028330913
    135 https://doi.org/10.1007/s12021-014-9245-2
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.media.2016.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028121501
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.media.2016.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013664571
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1109/cvpr.2015.7298965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093626237
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1109/cvpr.2016.273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095722054
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1109/iccv.2015.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093828312
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1109/iccv.2015.179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094679398
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1109/tmi.2014.2377694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696449
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1109/tmi.2016.2538465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696721
    152 rdf:type schema:CreativeWork
    153 https://www.grid.ac/institutes/grid.8241.f schema:alternateName University of Dundee
    154 schema:name University of Dundee
    155 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...