Personalized Pancreatic Tumor Growth Prediction via Group Learning View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017

AUTHORS

Ling Zhang , Le Lu , Ronald M. Summers , Electron Kebebew , Jianhua Yao

ABSTRACT

Tumor growth prediction, a highly challenging task, has long been viewed as a mathematical modeling problem, where the tumor growth pattern is personalized based on imaging and clinical data of a target patient. Though mathematical models yield promising results, their prediction accuracy may be limited by the absence of population trend data and personalized clinical characteristics. In this paper, we propose a statistical group learning approach to predict the tumor growth pattern that incorporates both the population trend and personalized data. In order to discover high-level features from multimodal imaging data, a deep convolutional neural network approach is developed to model the voxel-wise spatio-temporal tumor progression. The deep features are combined with the time intervals and the clinical factors to feed a process of feature selection. Our predictive model is pretrained on a group data set and personalized on the target patient data to estimate the future spatio-temporal progression of the patient’s tumor. Multimodal imaging data at multiple time points are used in the learning, personalization and inference stages. Our method achieves a Dice coefficient of \(86.8\%\,\pm \,3.6\%\) and RVD of \(7.9\%\,\pm \,5.4\%\) on a pancreatic tumor data set, outperforming the DSC of \(84.4\%\,\pm \,4.0\%\) and RVD \(13.9\%\,\pm \,9.8\%\) obtained by a previous state-of-the-art model-based method. More... »

PAGES

424-432

References to SciGraph publications

  • 2002-01. Gene Selection for Cancer Classification using Support Vector Machines in MACHINE LEARNING
  • 2007. Modeling Glioma Growth and Mass Effect in 3D MR Images of the Brain in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2007
  • 2016. Imaging Biomarker Discovery for Lung Cancer Survival Prediction in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2016
  • Book

    TITLE

    Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017

    ISBN

    978-3-319-66184-1
    978-3-319-66185-8

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-66185-8_48

    DOI

    http://dx.doi.org/10.1007/978-3-319-66185-8_48

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091428661


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Ling", 
            "id": "sg:person.011671073057.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011671073057.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Le", 
            "id": "sg:person.01353423536.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Summers", 
            "givenName": "Ronald M.", 
            "id": "sg:person.011331054577.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health", 
              "id": "https://www.grid.ac/institutes/grid.94365.3d", 
              "name": [
                "National Institutes of Health"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kebebew", 
            "givenName": "Electron", 
            "id": "sg:person.0724132322.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724132322.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yao", 
            "givenName": "Jianhua", 
            "id": "sg:person.012366760067.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/1961189.1961199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013637525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-75757-3_78", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024475997", 
              "https://doi.org/10.1007/978-3-540-75757-3_78"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-75757-3_78", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024475997", 
              "https://doi.org/10.1007/978-3-540-75757-3_78"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1012487302797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048573168", 
              "https://doi.org/10.1023/a:1012487302797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2005.857217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061694777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2016.2553401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061696747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4304/jcp.1.7.21-31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072445989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46723-8_75", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084908365", 
              "https://doi.org/10.1007/978-3-319-46723-8_75"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3065386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085642448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3065386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085642448"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017", 
        "datePublishedReg": "2017-01-01", 
        "description": "Tumor growth prediction, a highly challenging task, has long been viewed as a mathematical modeling problem, where the tumor growth pattern is personalized based on imaging and clinical data of a target patient. Though mathematical models yield promising results, their prediction accuracy may be limited by the absence of population trend data and personalized clinical characteristics. In this paper, we propose a statistical group learning approach to predict the tumor growth pattern that incorporates both the population trend and personalized data. In order to discover high-level features from multimodal imaging data, a deep convolutional neural network approach is developed to model the voxel-wise spatio-temporal tumor progression. The deep features are combined with the time intervals and the clinical factors to feed a process of feature selection. Our predictive model is pretrained on a group data set and personalized on the target patient data to estimate the future spatio-temporal progression of the patient\u2019s tumor. Multimodal imaging data at multiple time points are used in the learning, personalization and inference stages. Our method achieves a Dice coefficient of \\(86.8\\%\\,\\pm \\,3.6\\%\\) and RVD of \\(7.9\\%\\,\\pm \\,5.4\\%\\) on a pancreatic tumor data set, outperforming the DSC of \\(84.4\\%\\,\\pm \\,4.0\\%\\) and RVD \\(13.9\\%\\,\\pm \\,9.8\\%\\) obtained by a previous state-of-the-art model-based method.", 
        "editor": [
          {
            "familyName": "Descoteaux", 
            "givenName": "Maxime", 
            "type": "Person"
          }, 
          {
            "familyName": "Maier-Hein", 
            "givenName": "Lena", 
            "type": "Person"
          }, 
          {
            "familyName": "Franz", 
            "givenName": "Alfred", 
            "type": "Person"
          }, 
          {
            "familyName": "Jannin", 
            "givenName": "Pierre", 
            "type": "Person"
          }, 
          {
            "familyName": "Collins", 
            "givenName": "D. Louis", 
            "type": "Person"
          }, 
          {
            "familyName": "Duchesne", 
            "givenName": "Simon", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-66185-8_48", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-319-66184-1", 
            "978-3-319-66185-8"
          ], 
          "name": "Medical Image Computing and Computer-Assisted Intervention \u2212 MICCAI 2017", 
          "type": "Book"
        }, 
        "name": "Personalized Pancreatic Tumor Growth Prediction via Group Learning", 
        "pagination": "424-432", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-66185-8_48"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6c004f2be324f368c34c4507d75f304843fc2fd55870f8c19d525f7d0f28c314"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091428661"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-66185-8_48", 
          "https://app.dimensions.ai/details/publication/pub.1091428661"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T18:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000601.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-66185-8_48"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66185-8_48'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66185-8_48'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66185-8_48'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66185-8_48'


     

    This table displays all metadata directly associated to this object as RDF triples.

    148 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-66185-8_48 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N879ca871996e419db48402f6d8f74d00
    4 schema:citation sg:pub.10.1007/978-3-319-46723-8_75
    5 sg:pub.10.1007/978-3-540-75757-3_78
    6 sg:pub.10.1023/a:1012487302797
    7 https://doi.org/10.1109/tmi.2005.857217
    8 https://doi.org/10.1109/tmi.2016.2553401
    9 https://doi.org/10.1145/1961189.1961199
    10 https://doi.org/10.1145/3065386
    11 https://doi.org/10.4304/jcp.1.7.21-31
    12 schema:datePublished 2017
    13 schema:datePublishedReg 2017-01-01
    14 schema:description Tumor growth prediction, a highly challenging task, has long been viewed as a mathematical modeling problem, where the tumor growth pattern is personalized based on imaging and clinical data of a target patient. Though mathematical models yield promising results, their prediction accuracy may be limited by the absence of population trend data and personalized clinical characteristics. In this paper, we propose a statistical group learning approach to predict the tumor growth pattern that incorporates both the population trend and personalized data. In order to discover high-level features from multimodal imaging data, a deep convolutional neural network approach is developed to model the voxel-wise spatio-temporal tumor progression. The deep features are combined with the time intervals and the clinical factors to feed a process of feature selection. Our predictive model is pretrained on a group data set and personalized on the target patient data to estimate the future spatio-temporal progression of the patient’s tumor. Multimodal imaging data at multiple time points are used in the learning, personalization and inference stages. Our method achieves a Dice coefficient of \(86.8\%\,\pm \,3.6\%\) and RVD of \(7.9\%\,\pm \,5.4\%\) on a pancreatic tumor data set, outperforming the DSC of \(84.4\%\,\pm \,4.0\%\) and RVD \(13.9\%\,\pm \,9.8\%\) obtained by a previous state-of-the-art model-based method.
    15 schema:editor N8a5ef6a16606455db42a9ec3558be595
    16 schema:genre chapter
    17 schema:inLanguage en
    18 schema:isAccessibleForFree true
    19 schema:isPartOf N02178f41f6fe4cf3a9bf01e7c484964b
    20 schema:name Personalized Pancreatic Tumor Growth Prediction via Group Learning
    21 schema:pagination 424-432
    22 schema:productId N5c7ec21e177c4e1fb37b66f67b57b7db
    23 Nc7a0c509691d4a6193f6a3258d42bf91
    24 Ne4d5aa7074b546e39479d02ac51b2741
    25 schema:publisher Ne25371e33fa64211ba2109382683038e
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091428661
    27 https://doi.org/10.1007/978-3-319-66185-8_48
    28 schema:sdDatePublished 2019-04-15T18:52
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N3b7bc654148f49499705be66b1f68646
    31 schema:url http://link.springer.com/10.1007/978-3-319-66185-8_48
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset chapters
    34 rdf:type schema:Chapter
    35 N02178f41f6fe4cf3a9bf01e7c484964b schema:isbn 978-3-319-66184-1
    36 978-3-319-66185-8
    37 schema:name Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017
    38 rdf:type schema:Book
    39 N0e449405bd8b4995a6be3291cf29c565 rdf:first sg:person.011331054577.30
    40 rdf:rest N68cb7f2de9dd4577aba31ba458b4f362
    41 N1f156cd117b94a40b9e4052242b074e8 schema:familyName Franz
    42 schema:givenName Alfred
    43 rdf:type schema:Person
    44 N23e4df5d20f84f55b4d16b60bec84df8 rdf:first Na218fce3157c40f0916248618d74ea46
    45 rdf:rest N39b3a8df95d445a0a456fb09ffe8418d
    46 N39b3a8df95d445a0a456fb09ffe8418d rdf:first Nc1c5b2bbfa9a4a9fb099b9eea8e059e0
    47 rdf:rest rdf:nil
    48 N3b7bc654148f49499705be66b1f68646 schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 N52d586656c284a07a71bb30e72ea8187 rdf:first N75d9f61c7a324f13885455a7b2bac574
    51 rdf:rest Ne65d1cf1860646378630bedb4d8aef7f
    52 N5c7ec21e177c4e1fb37b66f67b57b7db schema:name doi
    53 schema:value 10.1007/978-3-319-66185-8_48
    54 rdf:type schema:PropertyValue
    55 N68cb7f2de9dd4577aba31ba458b4f362 rdf:first sg:person.0724132322.08
    56 rdf:rest Nb7eb59bcee9b4ac8b8788d44a40af353
    57 N73de62d75b874e2ebc3cfcfec9b6b46b rdf:first Nc5e35da87ae54bd0b1cae1e19f9cec51
    58 rdf:rest N23e4df5d20f84f55b4d16b60bec84df8
    59 N75d9f61c7a324f13885455a7b2bac574 schema:familyName Maier-Hein
    60 schema:givenName Lena
    61 rdf:type schema:Person
    62 N879ca871996e419db48402f6d8f74d00 rdf:first sg:person.011671073057.69
    63 rdf:rest Nd68875a40bd24bc883156b7a0a1be080
    64 N8a5ef6a16606455db42a9ec3558be595 rdf:first Nd29dd2990c1c461882eaa2700eef026f
    65 rdf:rest N52d586656c284a07a71bb30e72ea8187
    66 Na218fce3157c40f0916248618d74ea46 schema:familyName Collins
    67 schema:givenName D. Louis
    68 rdf:type schema:Person
    69 Nb7eb59bcee9b4ac8b8788d44a40af353 rdf:first sg:person.012366760067.46
    70 rdf:rest rdf:nil
    71 Nc1c5b2bbfa9a4a9fb099b9eea8e059e0 schema:familyName Duchesne
    72 schema:givenName Simon
    73 rdf:type schema:Person
    74 Nc5e35da87ae54bd0b1cae1e19f9cec51 schema:familyName Jannin
    75 schema:givenName Pierre
    76 rdf:type schema:Person
    77 Nc7a0c509691d4a6193f6a3258d42bf91 schema:name dimensions_id
    78 schema:value pub.1091428661
    79 rdf:type schema:PropertyValue
    80 Nd29dd2990c1c461882eaa2700eef026f schema:familyName Descoteaux
    81 schema:givenName Maxime
    82 rdf:type schema:Person
    83 Nd68875a40bd24bc883156b7a0a1be080 rdf:first sg:person.01353423536.73
    84 rdf:rest N0e449405bd8b4995a6be3291cf29c565
    85 Ne25371e33fa64211ba2109382683038e schema:location Cham
    86 schema:name Springer International Publishing
    87 rdf:type schema:Organisation
    88 Ne4d5aa7074b546e39479d02ac51b2741 schema:name readcube_id
    89 schema:value 6c004f2be324f368c34c4507d75f304843fc2fd55870f8c19d525f7d0f28c314
    90 rdf:type schema:PropertyValue
    91 Ne65d1cf1860646378630bedb4d8aef7f rdf:first N1f156cd117b94a40b9e4052242b074e8
    92 rdf:rest N73de62d75b874e2ebc3cfcfec9b6b46b
    93 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Information and Computing Sciences
    95 rdf:type schema:DefinedTerm
    96 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Artificial Intelligence and Image Processing
    98 rdf:type schema:DefinedTerm
    99 sg:person.011331054577.30 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    100 schema:familyName Summers
    101 schema:givenName Ronald M.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30
    103 rdf:type schema:Person
    104 sg:person.011671073057.69 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    105 schema:familyName Zhang
    106 schema:givenName Ling
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011671073057.69
    108 rdf:type schema:Person
    109 sg:person.012366760067.46 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    110 schema:familyName Yao
    111 schema:givenName Jianhua
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46
    113 rdf:type schema:Person
    114 sg:person.01353423536.73 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    115 schema:familyName Lu
    116 schema:givenName Le
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73
    118 rdf:type schema:Person
    119 sg:person.0724132322.08 schema:affiliation https://www.grid.ac/institutes/grid.94365.3d
    120 schema:familyName Kebebew
    121 schema:givenName Electron
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724132322.08
    123 rdf:type schema:Person
    124 sg:pub.10.1007/978-3-319-46723-8_75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084908365
    125 https://doi.org/10.1007/978-3-319-46723-8_75
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/978-3-540-75757-3_78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024475997
    128 https://doi.org/10.1007/978-3-540-75757-3_78
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1023/a:1012487302797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048573168
    131 https://doi.org/10.1023/a:1012487302797
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1109/tmi.2005.857217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694777
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1109/tmi.2016.2553401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696747
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1145/1961189.1961199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013637525
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1145/3065386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085642448
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.4304/jcp.1.7.21-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072445989
    142 rdf:type schema:CreativeWork
    143 https://www.grid.ac/institutes/grid.410305.3 schema:alternateName National Institutes of Health Clinical Center
    144 schema:name National Institutes of Health Clinical Center
    145 rdf:type schema:Organization
    146 https://www.grid.ac/institutes/grid.94365.3d schema:alternateName National Institutes of Health
    147 schema:name National Institutes of Health
    148 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...