Personalized Pancreatic Tumor Growth Prediction via Group Learning View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017

AUTHORS

Ling Zhang , Le Lu , Ronald M. Summers , Electron Kebebew , Jianhua Yao

ABSTRACT

Tumor growth prediction, a highly challenging task, has long been viewed as a mathematical modeling problem, where the tumor growth pattern is personalized based on imaging and clinical data of a target patient. Though mathematical models yield promising results, their prediction accuracy may be limited by the absence of population trend data and personalized clinical characteristics. In this paper, we propose a statistical group learning approach to predict the tumor growth pattern that incorporates both the population trend and personalized data. In order to discover high-level features from multimodal imaging data, a deep convolutional neural network approach is developed to model the voxel-wise spatio-temporal tumor progression. The deep features are combined with the time intervals and the clinical factors to feed a process of feature selection. Our predictive model is pretrained on a group data set and personalized on the target patient data to estimate the future spatio-temporal progression of the patient’s tumor. Multimodal imaging data at multiple time points are used in the learning, personalization and inference stages. Our method achieves a Dice coefficient of \(86.8\%\,\pm \,3.6\%\) and RVD of \(7.9\%\,\pm \,5.4\%\) on a pancreatic tumor data set, outperforming the DSC of \(84.4\%\,\pm \,4.0\%\) and RVD \(13.9\%\,\pm \,9.8\%\) obtained by a previous state-of-the-art model-based method. More... »

PAGES

424-432

References to SciGraph publications

  • 2002-01. Gene Selection for Cancer Classification using Support Vector Machines in MACHINE LEARNING
  • 2007. Modeling Glioma Growth and Mass Effect in 3D MR Images of the Brain in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2007
  • 2016. Imaging Biomarker Discovery for Lung Cancer Survival Prediction in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2016
  • Book

    TITLE

    Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017

    ISBN

    978-3-319-66184-1
    978-3-319-66185-8

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-66185-8_48

    DOI

    http://dx.doi.org/10.1007/978-3-319-66185-8_48

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091428661


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Ling", 
            "id": "sg:person.011671073057.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011671073057.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Le", 
            "id": "sg:person.01353423536.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Summers", 
            "givenName": "Ronald M.", 
            "id": "sg:person.011331054577.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health", 
              "id": "https://www.grid.ac/institutes/grid.94365.3d", 
              "name": [
                "National Institutes of Health"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kebebew", 
            "givenName": "Electron", 
            "id": "sg:person.0724132322.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724132322.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yao", 
            "givenName": "Jianhua", 
            "id": "sg:person.012366760067.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/1961189.1961199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013637525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-75757-3_78", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024475997", 
              "https://doi.org/10.1007/978-3-540-75757-3_78"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-75757-3_78", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024475997", 
              "https://doi.org/10.1007/978-3-540-75757-3_78"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1012487302797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048573168", 
              "https://doi.org/10.1023/a:1012487302797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2005.857217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061694777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2016.2553401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061696747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4304/jcp.1.7.21-31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072445989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46723-8_75", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084908365", 
              "https://doi.org/10.1007/978-3-319-46723-8_75"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3065386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085642448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3065386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085642448"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017", 
        "datePublishedReg": "2017-01-01", 
        "description": "Tumor growth prediction, a highly challenging task, has long been viewed as a mathematical modeling problem, where the tumor growth pattern is personalized based on imaging and clinical data of a target patient. Though mathematical models yield promising results, their prediction accuracy may be limited by the absence of population trend data and personalized clinical characteristics. In this paper, we propose a statistical group learning approach to predict the tumor growth pattern that incorporates both the population trend and personalized data. In order to discover high-level features from multimodal imaging data, a deep convolutional neural network approach is developed to model the voxel-wise spatio-temporal tumor progression. The deep features are combined with the time intervals and the clinical factors to feed a process of feature selection. Our predictive model is pretrained on a group data set and personalized on the target patient data to estimate the future spatio-temporal progression of the patient\u2019s tumor. Multimodal imaging data at multiple time points are used in the learning, personalization and inference stages. Our method achieves a Dice coefficient of \\(86.8\\%\\,\\pm \\,3.6\\%\\) and RVD of \\(7.9\\%\\,\\pm \\,5.4\\%\\) on a pancreatic tumor data set, outperforming the DSC of \\(84.4\\%\\,\\pm \\,4.0\\%\\) and RVD \\(13.9\\%\\,\\pm \\,9.8\\%\\) obtained by a previous state-of-the-art model-based method.", 
        "editor": [
          {
            "familyName": "Descoteaux", 
            "givenName": "Maxime", 
            "type": "Person"
          }, 
          {
            "familyName": "Maier-Hein", 
            "givenName": "Lena", 
            "type": "Person"
          }, 
          {
            "familyName": "Franz", 
            "givenName": "Alfred", 
            "type": "Person"
          }, 
          {
            "familyName": "Jannin", 
            "givenName": "Pierre", 
            "type": "Person"
          }, 
          {
            "familyName": "Collins", 
            "givenName": "D. Louis", 
            "type": "Person"
          }, 
          {
            "familyName": "Duchesne", 
            "givenName": "Simon", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-66185-8_48", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-319-66184-1", 
            "978-3-319-66185-8"
          ], 
          "name": "Medical Image Computing and Computer-Assisted Intervention \u2212 MICCAI 2017", 
          "type": "Book"
        }, 
        "name": "Personalized Pancreatic Tumor Growth Prediction via Group Learning", 
        "pagination": "424-432", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-66185-8_48"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6c004f2be324f368c34c4507d75f304843fc2fd55870f8c19d525f7d0f28c314"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091428661"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-66185-8_48", 
          "https://app.dimensions.ai/details/publication/pub.1091428661"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T18:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000601.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-66185-8_48"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66185-8_48'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66185-8_48'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66185-8_48'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66185-8_48'


     

    This table displays all metadata directly associated to this object as RDF triples.

    148 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-66185-8_48 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N8e52706a988946c8aceae78f9e63713e
    4 schema:citation sg:pub.10.1007/978-3-319-46723-8_75
    5 sg:pub.10.1007/978-3-540-75757-3_78
    6 sg:pub.10.1023/a:1012487302797
    7 https://doi.org/10.1109/tmi.2005.857217
    8 https://doi.org/10.1109/tmi.2016.2553401
    9 https://doi.org/10.1145/1961189.1961199
    10 https://doi.org/10.1145/3065386
    11 https://doi.org/10.4304/jcp.1.7.21-31
    12 schema:datePublished 2017
    13 schema:datePublishedReg 2017-01-01
    14 schema:description Tumor growth prediction, a highly challenging task, has long been viewed as a mathematical modeling problem, where the tumor growth pattern is personalized based on imaging and clinical data of a target patient. Though mathematical models yield promising results, their prediction accuracy may be limited by the absence of population trend data and personalized clinical characteristics. In this paper, we propose a statistical group learning approach to predict the tumor growth pattern that incorporates both the population trend and personalized data. In order to discover high-level features from multimodal imaging data, a deep convolutional neural network approach is developed to model the voxel-wise spatio-temporal tumor progression. The deep features are combined with the time intervals and the clinical factors to feed a process of feature selection. Our predictive model is pretrained on a group data set and personalized on the target patient data to estimate the future spatio-temporal progression of the patient’s tumor. Multimodal imaging data at multiple time points are used in the learning, personalization and inference stages. Our method achieves a Dice coefficient of \(86.8\%\,\pm \,3.6\%\) and RVD of \(7.9\%\,\pm \,5.4\%\) on a pancreatic tumor data set, outperforming the DSC of \(84.4\%\,\pm \,4.0\%\) and RVD \(13.9\%\,\pm \,9.8\%\) obtained by a previous state-of-the-art model-based method.
    15 schema:editor Ncdc3f9fefc464de7a2d8db9e09707fb4
    16 schema:genre chapter
    17 schema:inLanguage en
    18 schema:isAccessibleForFree true
    19 schema:isPartOf Nc661a2d9367e4c8d9a10a66d1ad7e169
    20 schema:name Personalized Pancreatic Tumor Growth Prediction via Group Learning
    21 schema:pagination 424-432
    22 schema:productId N96e2a42d7ebf464397a1494780f4a722
    23 Nac12e233bcd24b579191de91b3bc91a2
    24 Ndfbd806ae9c943b39c7460bf3dab2531
    25 schema:publisher N9f927c38e1a242aab565507a25c3f004
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091428661
    27 https://doi.org/10.1007/978-3-319-66185-8_48
    28 schema:sdDatePublished 2019-04-15T18:52
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N1af7e849797b45aeb25575fea3ef2096
    31 schema:url http://link.springer.com/10.1007/978-3-319-66185-8_48
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset chapters
    34 rdf:type schema:Chapter
    35 N116a6c7646a34a83bea7b1944a9c6eb7 rdf:first Nc40598f12c8e410bb2330729205b544b
    36 rdf:rest rdf:nil
    37 N1af7e849797b45aeb25575fea3ef2096 schema:name Springer Nature - SN SciGraph project
    38 rdf:type schema:Organization
    39 N1c470f671e6349278b8737b45975f0f4 schema:familyName Collins
    40 schema:givenName D. Louis
    41 rdf:type schema:Person
    42 N1ff22bd2f2044cc58f11a86862cbf6b3 rdf:first sg:person.011331054577.30
    43 rdf:rest Nae1d3e6324ec416f8f47d1beae09886a
    44 N340fa8069bbe49618b7bad96ae5a5efd schema:familyName Franz
    45 schema:givenName Alfred
    46 rdf:type schema:Person
    47 N6428dc76a6b44e5385c145d3f80b3f3d rdf:first N340fa8069bbe49618b7bad96ae5a5efd
    48 rdf:rest Nf2ea53a0a42a4aec82919b7982835d89
    49 N8e52706a988946c8aceae78f9e63713e rdf:first sg:person.011671073057.69
    50 rdf:rest Nb7d658b9b7d249b398ac6d7d9fa0d3be
    51 N96e2a42d7ebf464397a1494780f4a722 schema:name doi
    52 schema:value 10.1007/978-3-319-66185-8_48
    53 rdf:type schema:PropertyValue
    54 N9f927c38e1a242aab565507a25c3f004 schema:location Cham
    55 schema:name Springer International Publishing
    56 rdf:type schema:Organisation
    57 Nac12e233bcd24b579191de91b3bc91a2 schema:name dimensions_id
    58 schema:value pub.1091428661
    59 rdf:type schema:PropertyValue
    60 Nae1d3e6324ec416f8f47d1beae09886a rdf:first sg:person.0724132322.08
    61 rdf:rest Nca097d200643463bb690425546b2fb42
    62 Nb7d658b9b7d249b398ac6d7d9fa0d3be rdf:first sg:person.01353423536.73
    63 rdf:rest N1ff22bd2f2044cc58f11a86862cbf6b3
    64 Nc40598f12c8e410bb2330729205b544b schema:familyName Duchesne
    65 schema:givenName Simon
    66 rdf:type schema:Person
    67 Nc661a2d9367e4c8d9a10a66d1ad7e169 schema:isbn 978-3-319-66184-1
    68 978-3-319-66185-8
    69 schema:name Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017
    70 rdf:type schema:Book
    71 Nca097d200643463bb690425546b2fb42 rdf:first sg:person.012366760067.46
    72 rdf:rest rdf:nil
    73 Ncbed3d5559ff4bcabe166f0652c15d64 schema:familyName Descoteaux
    74 schema:givenName Maxime
    75 rdf:type schema:Person
    76 Ncdc3f9fefc464de7a2d8db9e09707fb4 rdf:first Ncbed3d5559ff4bcabe166f0652c15d64
    77 rdf:rest Ne22f7827fb954db291b4aba35cb3b2f7
    78 Ndc52c17fe8574b50a8ba253a0a10808a schema:familyName Jannin
    79 schema:givenName Pierre
    80 rdf:type schema:Person
    81 Ndfbd806ae9c943b39c7460bf3dab2531 schema:name readcube_id
    82 schema:value 6c004f2be324f368c34c4507d75f304843fc2fd55870f8c19d525f7d0f28c314
    83 rdf:type schema:PropertyValue
    84 Ne22f7827fb954db291b4aba35cb3b2f7 rdf:first Nfb35e7d35cb84d3bb750bcf9f9353093
    85 rdf:rest N6428dc76a6b44e5385c145d3f80b3f3d
    86 Neba56ba99a0f40719675270af700ab7d rdf:first N1c470f671e6349278b8737b45975f0f4
    87 rdf:rest N116a6c7646a34a83bea7b1944a9c6eb7
    88 Nf2ea53a0a42a4aec82919b7982835d89 rdf:first Ndc52c17fe8574b50a8ba253a0a10808a
    89 rdf:rest Neba56ba99a0f40719675270af700ab7d
    90 Nfb35e7d35cb84d3bb750bcf9f9353093 schema:familyName Maier-Hein
    91 schema:givenName Lena
    92 rdf:type schema:Person
    93 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Information and Computing Sciences
    95 rdf:type schema:DefinedTerm
    96 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Artificial Intelligence and Image Processing
    98 rdf:type schema:DefinedTerm
    99 sg:person.011331054577.30 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    100 schema:familyName Summers
    101 schema:givenName Ronald M.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30
    103 rdf:type schema:Person
    104 sg:person.011671073057.69 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    105 schema:familyName Zhang
    106 schema:givenName Ling
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011671073057.69
    108 rdf:type schema:Person
    109 sg:person.012366760067.46 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    110 schema:familyName Yao
    111 schema:givenName Jianhua
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46
    113 rdf:type schema:Person
    114 sg:person.01353423536.73 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    115 schema:familyName Lu
    116 schema:givenName Le
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73
    118 rdf:type schema:Person
    119 sg:person.0724132322.08 schema:affiliation https://www.grid.ac/institutes/grid.94365.3d
    120 schema:familyName Kebebew
    121 schema:givenName Electron
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724132322.08
    123 rdf:type schema:Person
    124 sg:pub.10.1007/978-3-319-46723-8_75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084908365
    125 https://doi.org/10.1007/978-3-319-46723-8_75
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/978-3-540-75757-3_78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024475997
    128 https://doi.org/10.1007/978-3-540-75757-3_78
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1023/a:1012487302797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048573168
    131 https://doi.org/10.1023/a:1012487302797
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1109/tmi.2005.857217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694777
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1109/tmi.2016.2553401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696747
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1145/1961189.1961199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013637525
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1145/3065386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085642448
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.4304/jcp.1.7.21-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072445989
    142 rdf:type schema:CreativeWork
    143 https://www.grid.ac/institutes/grid.410305.3 schema:alternateName National Institutes of Health Clinical Center
    144 schema:name National Institutes of Health Clinical Center
    145 rdf:type schema:Organization
    146 https://www.grid.ac/institutes/grid.94365.3d schema:alternateName National Institutes of Health
    147 schema:name National Institutes of Health
    148 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...