SVF-Net: Learning Deformable Image Registration Using Shape Matching View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017

AUTHORS

Marc-Michel Rohé , Manasi Datar , Tobias Heimann , Maxime Sermesant , Xavier Pennec

ABSTRACT

In this paper, we propose an innovative approach for registration based on the deterministic prediction of the parameters from both images instead of the optimization of a energy criteria. The method relies on a fully convolutional network whose architecture consists of contracting layers to detect relevant features and a symmetric expanding path that matches them together and outputs the transformation parametrization. Whereas convolutional networks have seen a widespread expansion and have been already applied to many medical imaging problems such as segmentation and classification, its application to registration has so far faced the challenge of defining ground truth data on which to train the algorithm. Here, we present a novel training strategy to build reference deformations which relies on the registration of segmented regions of interest. We apply this methodology to the problem of inter-patient heart registration and show an important improvement over a state of the art optimization based algorithm. Not only our method is more accurate but it is also faster - registration of two 3D-images taking less than 30 ms second on a GPU - and more robust to outliers. More... »

PAGES

266-274

Book

TITLE

Medical Image Computing and Computer Assisted Intervention − MICCAI 2017

ISBN

978-3-319-66181-0
978-3-319-66182-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-66182-7_31

DOI

http://dx.doi.org/10.1007/978-3-319-66182-7_31

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091428447


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Universit\u00e9 C\u00f4te d\u2019Azur, Inria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roh\u00e9", 
        "givenName": "Marc-Michel", 
        "id": "sg:person.011045251352.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011045251352.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Siemens Healthcare Technology Center"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Datar", 
        "givenName": "Manasi", 
        "id": "sg:person.01301115334.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301115334.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Siemens Healthcare Technology Center"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heimann", 
        "givenName": "Tobias", 
        "id": "sg:person.01327453250.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327453250.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Universit\u00e9 C\u00f4te d\u2019Azur, Inria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sermesant", 
        "givenName": "Maxime", 
        "id": "sg:person.0624422166.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624422166.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Universit\u00e9 C\u00f4te d\u2019Azur, Inria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pennec", 
        "givenName": "Xavier", 
        "id": "sg:person.01047036047.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047036047.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:visi.0000043755.93987.aa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001093472", 
          "https://doi.org/10.1023/b:visi.0000043755.93987.aa"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-24574-4_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017774818", 
          "https://doi.org/10.1007/978-3-319-24574-4_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2014.06.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034014316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2013.00151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034698552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2013.04.114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040811338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11866565_113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045490282", 
          "https://doi.org/10.1007/11866565_113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11866565_113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045490282", 
          "https://doi.org/10.1007/11866565_113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-007-5446-1_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046552752", 
          "https://doi.org/10.1007/978-94-007-5446-1_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-28326-0_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048550399", 
          "https://doi.org/10.1007/978-3-642-28326-0_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.585766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-46976-8_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084906643", 
          "https://doi.org/10.1007/978-3-319-46976-8_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093626237"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "In this paper, we propose an innovative approach for registration based on the deterministic prediction of the parameters from both images instead of the optimization of a energy criteria. The method relies on a fully convolutional network whose architecture consists of contracting layers to detect relevant features and a symmetric expanding path that matches them together and outputs the transformation parametrization. Whereas convolutional networks have seen a widespread expansion and have been already applied to many medical imaging problems such as segmentation and classification, its application to registration has so far faced the challenge of defining ground truth data on which to train the algorithm. Here, we present a novel training strategy to build reference deformations which relies on the registration of segmented regions of interest. We apply this methodology to the problem of inter-patient heart registration and show an important improvement over a state of the art optimization based algorithm. Not only our method is more accurate but it is also faster - registration of two 3D-images taking less than 30 ms second on a GPU - and more robust to outliers.", 
    "editor": [
      {
        "familyName": "Descoteaux", 
        "givenName": "Maxime", 
        "type": "Person"
      }, 
      {
        "familyName": "Maier-Hein", 
        "givenName": "Lena", 
        "type": "Person"
      }, 
      {
        "familyName": "Franz", 
        "givenName": "Alfred", 
        "type": "Person"
      }, 
      {
        "familyName": "Jannin", 
        "givenName": "Pierre", 
        "type": "Person"
      }, 
      {
        "familyName": "Collins", 
        "givenName": "D. Louis", 
        "type": "Person"
      }, 
      {
        "familyName": "Duchesne", 
        "givenName": "Simon", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-66182-7_31", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-66181-0", 
        "978-3-319-66182-7"
      ], 
      "name": "Medical Image Computing and Computer Assisted Intervention \u2212 MICCAI 2017", 
      "type": "Book"
    }, 
    "name": "SVF-Net: Learning Deformable Image Registration Using Shape Matching", 
    "pagination": "266-274", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-66182-7_31"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "54d02636a99753951af17db53b56b329254c4fc5e536a423e9c8f7902ae622e5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091428447"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-66182-7_31", 
      "https://app.dimensions.ai/details/publication/pub.1091428447"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000601.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-66182-7_31"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66182-7_31'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66182-7_31'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66182-7_31'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66182-7_31'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-66182-7_31 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nff4a326b79524fb294b1e8177ae24e2d
4 schema:citation sg:pub.10.1007/11866565_113
5 sg:pub.10.1007/978-3-319-24574-4_28
6 sg:pub.10.1007/978-3-319-46976-8_6
7 sg:pub.10.1007/978-3-642-28326-0_10
8 sg:pub.10.1007/978-94-007-5446-1_9
9 sg:pub.10.1023/b:visi.0000043755.93987.aa
10 https://doi.org/10.1016/j.neuroimage.2013.04.114
11 https://doi.org/10.1016/j.neuroimage.2014.06.043
12 https://doi.org/10.1109/42.585766
13 https://doi.org/10.1109/cvpr.2015.7298965
14 https://doi.org/10.3389/fnins.2013.00151
15 schema:datePublished 2017
16 schema:datePublishedReg 2017-01-01
17 schema:description In this paper, we propose an innovative approach for registration based on the deterministic prediction of the parameters from both images instead of the optimization of a energy criteria. The method relies on a fully convolutional network whose architecture consists of contracting layers to detect relevant features and a symmetric expanding path that matches them together and outputs the transformation parametrization. Whereas convolutional networks have seen a widespread expansion and have been already applied to many medical imaging problems such as segmentation and classification, its application to registration has so far faced the challenge of defining ground truth data on which to train the algorithm. Here, we present a novel training strategy to build reference deformations which relies on the registration of segmented regions of interest. We apply this methodology to the problem of inter-patient heart registration and show an important improvement over a state of the art optimization based algorithm. Not only our method is more accurate but it is also faster - registration of two 3D-images taking less than 30 ms second on a GPU - and more robust to outliers.
18 schema:editor N9ed66ab020314f8887826ffcae0f1460
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N7e8d2d80c1a24d6b830ec23482e19731
23 schema:name SVF-Net: Learning Deformable Image Registration Using Shape Matching
24 schema:pagination 266-274
25 schema:productId N346fbb51a2854990a8cce8507d5ca22e
26 N64e4f129ddc34e2ab1beef00acc913db
27 N8574167cdfed471dbaf53f483c4e4b62
28 schema:publisher N9593856c24594d5a996d341220aa5fb7
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091428447
30 https://doi.org/10.1007/978-3-319-66182-7_31
31 schema:sdDatePublished 2019-04-16T00:31
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nb9150118a6cf4e808b9a73cdd42f54c0
34 schema:url http://link.springer.com/10.1007/978-3-319-66182-7_31
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N04ef65c632854bf1989e9c2c8236aede rdf:first sg:person.01047036047.02
39 rdf:rest rdf:nil
40 N0841f1be485048919ddb4223692f71a3 schema:name Université Côte d’Azur, Inria
41 rdf:type schema:Organization
42 N0ad69b2c20084550a4ec7e6e1af3fe5e schema:familyName Descoteaux
43 schema:givenName Maxime
44 rdf:type schema:Person
45 N115c1a00925d42f2a30a28d74fad817f schema:familyName Franz
46 schema:givenName Alfred
47 rdf:type schema:Person
48 N245cf3ebae9946cd817b3786e8d70dda rdf:first sg:person.01327453250.15
49 rdf:rest Na4c6a7d1d67c4d9db7ecb3fd8743c359
50 N346fbb51a2854990a8cce8507d5ca22e schema:name readcube_id
51 schema:value 54d02636a99753951af17db53b56b329254c4fc5e536a423e9c8f7902ae622e5
52 rdf:type schema:PropertyValue
53 N351e93a1b13f4c47b532f4d20b93a49a rdf:first Nf04511b1de964b1fb8326765e7e42782
54 rdf:rest rdf:nil
55 N3f2780fae09f48d186147e81eefc6422 schema:name Siemens Healthcare Technology Center
56 rdf:type schema:Organization
57 N64e4f129ddc34e2ab1beef00acc913db schema:name doi
58 schema:value 10.1007/978-3-319-66182-7_31
59 rdf:type schema:PropertyValue
60 N6a508e61358f475eb0d8605082bf0348 schema:name Siemens Healthcare Technology Center
61 rdf:type schema:Organization
62 N6e9c56a451a943a884b19c9667844571 schema:name Université Côte d’Azur, Inria
63 rdf:type schema:Organization
64 N6fc2ac61a597464baa322e07d120bc78 rdf:first N115c1a00925d42f2a30a28d74fad817f
65 rdf:rest Nc789738e2d9043fbaeda5334dcac2b59
66 N7e8d2d80c1a24d6b830ec23482e19731 schema:isbn 978-3-319-66181-0
67 978-3-319-66182-7
68 schema:name Medical Image Computing and Computer Assisted Intervention − MICCAI 2017
69 rdf:type schema:Book
70 N84b42fe4ab254042b6436dc32a07078b schema:familyName Maier-Hein
71 schema:givenName Lena
72 rdf:type schema:Person
73 N8574167cdfed471dbaf53f483c4e4b62 schema:name dimensions_id
74 schema:value pub.1091428447
75 rdf:type schema:PropertyValue
76 N86e51e3cefe243d58019cca2de5b52a3 rdf:first N84b42fe4ab254042b6436dc32a07078b
77 rdf:rest N6fc2ac61a597464baa322e07d120bc78
78 N9593856c24594d5a996d341220aa5fb7 schema:location Cham
79 schema:name Springer International Publishing
80 rdf:type schema:Organisation
81 N9893ce010f684ad0b3ae57a0c11847cd schema:familyName Jannin
82 schema:givenName Pierre
83 rdf:type schema:Person
84 N9ed66ab020314f8887826ffcae0f1460 rdf:first N0ad69b2c20084550a4ec7e6e1af3fe5e
85 rdf:rest N86e51e3cefe243d58019cca2de5b52a3
86 Na4c6a7d1d67c4d9db7ecb3fd8743c359 rdf:first sg:person.0624422166.61
87 rdf:rest N04ef65c632854bf1989e9c2c8236aede
88 Nb6a62b07f2e744a3bb47a5975ee5f2c8 schema:name Université Côte d’Azur, Inria
89 rdf:type schema:Organization
90 Nb9150118a6cf4e808b9a73cdd42f54c0 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Nbf2395a8904d4037b540618ae5730aad rdf:first Ne37404f295974745a92b634f1927fbbf
93 rdf:rest N351e93a1b13f4c47b532f4d20b93a49a
94 Nc789738e2d9043fbaeda5334dcac2b59 rdf:first N9893ce010f684ad0b3ae57a0c11847cd
95 rdf:rest Nbf2395a8904d4037b540618ae5730aad
96 Ne37404f295974745a92b634f1927fbbf schema:familyName Collins
97 schema:givenName D. Louis
98 rdf:type schema:Person
99 Nf04511b1de964b1fb8326765e7e42782 schema:familyName Duchesne
100 schema:givenName Simon
101 rdf:type schema:Person
102 Nf9a1a28797054f59aa7027e6682f2c53 rdf:first sg:person.01301115334.64
103 rdf:rest N245cf3ebae9946cd817b3786e8d70dda
104 Nff4a326b79524fb294b1e8177ae24e2d rdf:first sg:person.011045251352.07
105 rdf:rest Nf9a1a28797054f59aa7027e6682f2c53
106 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
107 schema:name Information and Computing Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
110 schema:name Artificial Intelligence and Image Processing
111 rdf:type schema:DefinedTerm
112 sg:person.01047036047.02 schema:affiliation Nb6a62b07f2e744a3bb47a5975ee5f2c8
113 schema:familyName Pennec
114 schema:givenName Xavier
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047036047.02
116 rdf:type schema:Person
117 sg:person.011045251352.07 schema:affiliation N0841f1be485048919ddb4223692f71a3
118 schema:familyName Rohé
119 schema:givenName Marc-Michel
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011045251352.07
121 rdf:type schema:Person
122 sg:person.01301115334.64 schema:affiliation N3f2780fae09f48d186147e81eefc6422
123 schema:familyName Datar
124 schema:givenName Manasi
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301115334.64
126 rdf:type schema:Person
127 sg:person.01327453250.15 schema:affiliation N6a508e61358f475eb0d8605082bf0348
128 schema:familyName Heimann
129 schema:givenName Tobias
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327453250.15
131 rdf:type schema:Person
132 sg:person.0624422166.61 schema:affiliation N6e9c56a451a943a884b19c9667844571
133 schema:familyName Sermesant
134 schema:givenName Maxime
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624422166.61
136 rdf:type schema:Person
137 sg:pub.10.1007/11866565_113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045490282
138 https://doi.org/10.1007/11866565_113
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/978-3-319-24574-4_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017774818
141 https://doi.org/10.1007/978-3-319-24574-4_28
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/978-3-319-46976-8_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084906643
144 https://doi.org/10.1007/978-3-319-46976-8_6
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/978-3-642-28326-0_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048550399
147 https://doi.org/10.1007/978-3-642-28326-0_10
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/978-94-007-5446-1_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046552752
150 https://doi.org/10.1007/978-94-007-5446-1_9
151 rdf:type schema:CreativeWork
152 sg:pub.10.1023/b:visi.0000043755.93987.aa schema:sameAs https://app.dimensions.ai/details/publication/pub.1001093472
153 https://doi.org/10.1023/b:visi.0000043755.93987.aa
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.neuroimage.2013.04.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040811338
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.neuroimage.2014.06.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034014316
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/42.585766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170543
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/cvpr.2015.7298965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093626237
162 rdf:type schema:CreativeWork
163 https://doi.org/10.3389/fnins.2013.00151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034698552
164 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...