Progressive and Multi-path Holistically Nested Neural Networks for Pathological Lung Segmentation from CT Images View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017

AUTHORS

Adam P. Harrison , Ziyue Xu , Kevin George , Le Lu , Ronald M. Summers , Daniel J. Mollura

ABSTRACT

Pathological lung segmentation (PLS) is an important, yet challenging, medical image application due to the wide variability of pathological lung appearance and shape. Because PLS is often a pre-requisite for other imaging analytics, methodological simplicity and generality are key factors in usability. Along those lines, we present a bottom-up deep-learning based approach that is expressive enough to handle variations in appearance, while remaining unaffected by any variations in shape. We incorporate the deeply supervised learning framework, but enhance it with a simple, yet effective, progressive multi-path scheme, which more reliably merges outputs from different network stages. The result is a deep model able to produce finer detailed masks, which we call progressive holistically-nested networks (P-HNNs). Using extensive cross-validation, our method is tested on a multi-institutional dataset comprising 929 CT scans (848 publicly available), of pathological lungs, reporting mean dice scores of 0.985 and demonstrating significant qualitative and quantitative improvements over state-of-the art approaches. More... »

PAGES

621-629

References to SciGraph publications

  • 2016. Dense Volume-to-Volume Vascular Boundary Detection in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION -- MICCAI 2016
  • 2016. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2016
  • 2011. Multi-stage Learning for Robust Lung Segmentation in Challenging CT Volumes in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2011
  • 2016. Automatic Lymph Node Cluster Segmentation Using Holistically-Nested Neural Networks and Structured Optimization in CT Images in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2016
  • 2014. Segmentation of Lungs with Interstitial Lung Disease in CT Scans: A TV-L1 Based Texture Analysis Approach in ADVANCES IN VISUAL COMPUTING
  • 2016. Spatial Aggregation of Holistically-Nested Networks for Automated Pancreas Segmentation in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2016
  • 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2015
  • Book

    TITLE

    Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017

    ISBN

    978-3-319-66178-0
    978-3-319-66179-7

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-66179-7_71

    DOI

    http://dx.doi.org/10.1007/978-3-319-66179-7_71

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091432029


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Institutes of Health", 
              "id": "https://www.grid.ac/institutes/grid.94365.3d", 
              "name": [
                "National Institutes of Health"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Harrison", 
            "givenName": "Adam P.", 
            "id": "sg:person.015650075713.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015650075713.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health", 
              "id": "https://www.grid.ac/institutes/grid.94365.3d", 
              "name": [
                "National Institutes of Health"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Ziyue", 
            "id": "sg:person.0705635036.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705635036.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health", 
              "id": "https://www.grid.ac/institutes/grid.94365.3d", 
              "name": [
                "National Institutes of Health"
              ], 
              "type": "Organization"
            }, 
            "familyName": "George", 
            "givenName": "Kevin", 
            "id": "sg:person.014106142713.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014106142713.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health", 
              "id": "https://www.grid.ac/institutes/grid.94365.3d", 
              "name": [
                "National Institutes of Health"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Le", 
            "id": "sg:person.01353423536.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health", 
              "id": "https://www.grid.ac/institutes/grid.94365.3d", 
              "name": [
                "National Institutes of Health"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Summers", 
            "givenName": "Ronald M.", 
            "id": "sg:person.011331054577.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health", 
              "id": "https://www.grid.ac/institutes/grid.94365.3d", 
              "name": [
                "National Institutes of Health"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mollura", 
            "givenName": "Daniel J.", 
            "id": "sg:person.01312676340.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312676340.06"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1117/12.773159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011308436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-24574-4_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017774818", 
              "https://doi.org/10.1007/978-3-319-24574-4_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.3222872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020826779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-14249-4_48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037635700", 
              "https://doi.org/10.1007/978-3-319-14249-4_48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compmedimag.2011.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038124924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-23626-6_82", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039860552", 
              "https://doi.org/10.1007/978-3-642-23626-6_82"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-23626-6_82", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039860552", 
              "https://doi.org/10.1007/978-3-642-23626-6_82"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2013/942353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047559939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2015.2482387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061530018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2014.2337057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061696346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46723-8_52", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084904832", 
              "https://doi.org/10.1007/978-3-319-46723-8_52"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46723-8_49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084908686", 
              "https://doi.org/10.1007/978-3-319-46723-8_49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46723-8_45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084914058", 
              "https://doi.org/10.1007/978-3-319-46723-8_45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46726-9_43", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084920535", 
              "https://doi.org/10.1007/978-3-319-46726-9_43"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2015.7298965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093626237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2015.164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094045097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2017.549", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095774569"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017", 
        "datePublishedReg": "2017-01-01", 
        "description": "Pathological lung segmentation (PLS) is an important, yet challenging, medical image application due to the wide variability of pathological lung appearance and shape. Because PLS is often a pre-requisite for other imaging analytics, methodological simplicity and generality are key factors in usability. Along those lines, we present a bottom-up deep-learning based approach that is expressive enough to handle variations in appearance, while remaining unaffected by any variations in shape. We incorporate the deeply supervised learning framework, but enhance it with a simple, yet effective, progressive multi-path scheme, which more reliably merges outputs from different network stages. The result is a deep model able to produce finer detailed masks, which we call progressive holistically-nested networks (P-HNNs). Using extensive cross-validation, our method is tested on a multi-institutional dataset comprising 929 CT scans (848 publicly available), of pathological lungs, reporting mean dice scores of 0.985 and demonstrating significant qualitative and quantitative improvements over state-of-the art approaches.", 
        "editor": [
          {
            "familyName": "Descoteaux", 
            "givenName": "Maxime", 
            "type": "Person"
          }, 
          {
            "familyName": "Maier-Hein", 
            "givenName": "Lena", 
            "type": "Person"
          }, 
          {
            "familyName": "Franz", 
            "givenName": "Alfred", 
            "type": "Person"
          }, 
          {
            "familyName": "Jannin", 
            "givenName": "Pierre", 
            "type": "Person"
          }, 
          {
            "familyName": "Collins", 
            "givenName": "D. Louis", 
            "type": "Person"
          }, 
          {
            "familyName": "Duchesne", 
            "givenName": "Simon", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-66179-7_71", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-319-66178-0", 
            "978-3-319-66179-7"
          ], 
          "name": "Medical Image Computing and Computer-Assisted Intervention \u2212 MICCAI 2017", 
          "type": "Book"
        }, 
        "name": "Progressive and Multi-path Holistically Nested Neural Networks for Pathological Lung Segmentation from CT Images", 
        "pagination": "621-629", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-66179-7_71"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e26aea45f43868c1341793cd1b950a21af650ed9a6f400adf15f45cebe4ff7a1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091432029"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-66179-7_71", 
          "https://app.dimensions.ai/details/publication/pub.1091432029"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T11:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000601.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-66179-7_71"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66179-7_71'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66179-7_71'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66179-7_71'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66179-7_71'


     

    This table displays all metadata directly associated to this object as RDF triples.

    180 TRIPLES      23 PREDICATES      43 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-66179-7_71 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nd68dcf67c1ba4c91ad2ba73150bbb00f
    4 schema:citation sg:pub.10.1007/978-3-319-14249-4_48
    5 sg:pub.10.1007/978-3-319-24574-4_28
    6 sg:pub.10.1007/978-3-319-46723-8_45
    7 sg:pub.10.1007/978-3-319-46723-8_49
    8 sg:pub.10.1007/978-3-319-46723-8_52
    9 sg:pub.10.1007/978-3-319-46726-9_43
    10 sg:pub.10.1007/978-3-642-23626-6_82
    11 https://doi.org/10.1016/j.compmedimag.2011.07.003
    12 https://doi.org/10.1109/cvpr.2015.7298965
    13 https://doi.org/10.1109/cvpr.2017.549
    14 https://doi.org/10.1109/iccv.2015.164
    15 https://doi.org/10.1109/tbme.2015.2482387
    16 https://doi.org/10.1109/tmi.2014.2337057
    17 https://doi.org/10.1117/12.773159
    18 https://doi.org/10.1118/1.3222872
    19 https://doi.org/10.1155/2013/942353
    20 schema:datePublished 2017
    21 schema:datePublishedReg 2017-01-01
    22 schema:description Pathological lung segmentation (PLS) is an important, yet challenging, medical image application due to the wide variability of pathological lung appearance and shape. Because PLS is often a pre-requisite for other imaging analytics, methodological simplicity and generality are key factors in usability. Along those lines, we present a bottom-up deep-learning based approach that is expressive enough to handle variations in appearance, while remaining unaffected by any variations in shape. We incorporate the deeply supervised learning framework, but enhance it with a simple, yet effective, progressive multi-path scheme, which more reliably merges outputs from different network stages. The result is a deep model able to produce finer detailed masks, which we call progressive holistically-nested networks (P-HNNs). Using extensive cross-validation, our method is tested on a multi-institutional dataset comprising 929 CT scans (848 publicly available), of pathological lungs, reporting mean dice scores of 0.985 and demonstrating significant qualitative and quantitative improvements over state-of-the art approaches.
    23 schema:editor N3e213a5bc9604fcfa833c9c65f818b40
    24 schema:genre chapter
    25 schema:inLanguage en
    26 schema:isAccessibleForFree true
    27 schema:isPartOf Naadf1359e437479fb28bc6636471fa85
    28 schema:name Progressive and Multi-path Holistically Nested Neural Networks for Pathological Lung Segmentation from CT Images
    29 schema:pagination 621-629
    30 schema:productId N1eeab536b4f44f228a7b6a31257d6624
    31 N6a309df4b1e9444fbb11256f2eebf215
    32 Nbd5979984a4d4c37a9069575a461e975
    33 schema:publisher N740fcf24ed514432a18bc9a3ae3f1b88
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091432029
    35 https://doi.org/10.1007/978-3-319-66179-7_71
    36 schema:sdDatePublished 2019-04-15T11:14
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher Nfa49cfa849364806a16eb580f4cd0d88
    39 schema:url http://link.springer.com/10.1007/978-3-319-66179-7_71
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset chapters
    42 rdf:type schema:Chapter
    43 N12150afba17049658a4ca620b1cf2f8e rdf:first N6871cf6c8d7447ac943fbbb4ac9a6194
    44 rdf:rest N6be188e831ec4f52aff86eb547666e09
    45 N1c851b96928e4a14bb6d2272278e500d rdf:first sg:person.014106142713.02
    46 rdf:rest N32780ecf27aa4a049c671fec76c79a64
    47 N1eeab536b4f44f228a7b6a31257d6624 schema:name doi
    48 schema:value 10.1007/978-3-319-66179-7_71
    49 rdf:type schema:PropertyValue
    50 N2c67fcfde537415fa3a1a65f7ba8e5c7 rdf:first sg:person.0705635036.05
    51 rdf:rest N1c851b96928e4a14bb6d2272278e500d
    52 N32780ecf27aa4a049c671fec76c79a64 rdf:first sg:person.01353423536.73
    53 rdf:rest Nb7c18acdb27d4bd78d7bed9b604b97fc
    54 N342b836219b645a59265808ac4f65a42 schema:familyName Collins
    55 schema:givenName D. Louis
    56 rdf:type schema:Person
    57 N3e213a5bc9604fcfa833c9c65f818b40 rdf:first N5449fb741b434da28e48c9f36c006a8c
    58 rdf:rest N12150afba17049658a4ca620b1cf2f8e
    59 N5449fb741b434da28e48c9f36c006a8c schema:familyName Descoteaux
    60 schema:givenName Maxime
    61 rdf:type schema:Person
    62 N551426575c2049b983270ffae3d9a72c schema:familyName Jannin
    63 schema:givenName Pierre
    64 rdf:type schema:Person
    65 N5727bdc801c34dc599181bb035c22e58 schema:familyName Duchesne
    66 schema:givenName Simon
    67 rdf:type schema:Person
    68 N62f6ab10236e4e8ab5b7eb5e4922610a rdf:first N5727bdc801c34dc599181bb035c22e58
    69 rdf:rest rdf:nil
    70 N6871cf6c8d7447ac943fbbb4ac9a6194 schema:familyName Maier-Hein
    71 schema:givenName Lena
    72 rdf:type schema:Person
    73 N6a309df4b1e9444fbb11256f2eebf215 schema:name dimensions_id
    74 schema:value pub.1091432029
    75 rdf:type schema:PropertyValue
    76 N6be188e831ec4f52aff86eb547666e09 rdf:first Nfd3912fc8f26431797c1645f40b47979
    77 rdf:rest N9ce8adf32bcd4d559f916bc962a4616d
    78 N740fcf24ed514432a18bc9a3ae3f1b88 schema:location Cham
    79 schema:name Springer International Publishing
    80 rdf:type schema:Organisation
    81 N7dcbce6b2a09419290a71eca6dc6e2f7 rdf:first sg:person.01312676340.06
    82 rdf:rest rdf:nil
    83 N8507894782e448bebf9905e11543e640 rdf:first N342b836219b645a59265808ac4f65a42
    84 rdf:rest N62f6ab10236e4e8ab5b7eb5e4922610a
    85 N9ce8adf32bcd4d559f916bc962a4616d rdf:first N551426575c2049b983270ffae3d9a72c
    86 rdf:rest N8507894782e448bebf9905e11543e640
    87 Naadf1359e437479fb28bc6636471fa85 schema:isbn 978-3-319-66178-0
    88 978-3-319-66179-7
    89 schema:name Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017
    90 rdf:type schema:Book
    91 Nb7c18acdb27d4bd78d7bed9b604b97fc rdf:first sg:person.011331054577.30
    92 rdf:rest N7dcbce6b2a09419290a71eca6dc6e2f7
    93 Nbd5979984a4d4c37a9069575a461e975 schema:name readcube_id
    94 schema:value e26aea45f43868c1341793cd1b950a21af650ed9a6f400adf15f45cebe4ff7a1
    95 rdf:type schema:PropertyValue
    96 Nd68dcf67c1ba4c91ad2ba73150bbb00f rdf:first sg:person.015650075713.17
    97 rdf:rest N2c67fcfde537415fa3a1a65f7ba8e5c7
    98 Nfa49cfa849364806a16eb580f4cd0d88 schema:name Springer Nature - SN SciGraph project
    99 rdf:type schema:Organization
    100 Nfd3912fc8f26431797c1645f40b47979 schema:familyName Franz
    101 schema:givenName Alfred
    102 rdf:type schema:Person
    103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Information and Computing Sciences
    105 rdf:type schema:DefinedTerm
    106 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Artificial Intelligence and Image Processing
    108 rdf:type schema:DefinedTerm
    109 sg:person.011331054577.30 schema:affiliation https://www.grid.ac/institutes/grid.94365.3d
    110 schema:familyName Summers
    111 schema:givenName Ronald M.
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30
    113 rdf:type schema:Person
    114 sg:person.01312676340.06 schema:affiliation https://www.grid.ac/institutes/grid.94365.3d
    115 schema:familyName Mollura
    116 schema:givenName Daniel J.
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312676340.06
    118 rdf:type schema:Person
    119 sg:person.01353423536.73 schema:affiliation https://www.grid.ac/institutes/grid.94365.3d
    120 schema:familyName Lu
    121 schema:givenName Le
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73
    123 rdf:type schema:Person
    124 sg:person.014106142713.02 schema:affiliation https://www.grid.ac/institutes/grid.94365.3d
    125 schema:familyName George
    126 schema:givenName Kevin
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014106142713.02
    128 rdf:type schema:Person
    129 sg:person.015650075713.17 schema:affiliation https://www.grid.ac/institutes/grid.94365.3d
    130 schema:familyName Harrison
    131 schema:givenName Adam P.
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015650075713.17
    133 rdf:type schema:Person
    134 sg:person.0705635036.05 schema:affiliation https://www.grid.ac/institutes/grid.94365.3d
    135 schema:familyName Xu
    136 schema:givenName Ziyue
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705635036.05
    138 rdf:type schema:Person
    139 sg:pub.10.1007/978-3-319-14249-4_48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037635700
    140 https://doi.org/10.1007/978-3-319-14249-4_48
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/978-3-319-24574-4_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017774818
    143 https://doi.org/10.1007/978-3-319-24574-4_28
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/978-3-319-46723-8_45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084914058
    146 https://doi.org/10.1007/978-3-319-46723-8_45
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/978-3-319-46723-8_49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084908686
    149 https://doi.org/10.1007/978-3-319-46723-8_49
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/978-3-319-46723-8_52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084904832
    152 https://doi.org/10.1007/978-3-319-46723-8_52
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/978-3-319-46726-9_43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084920535
    155 https://doi.org/10.1007/978-3-319-46726-9_43
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/978-3-642-23626-6_82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039860552
    158 https://doi.org/10.1007/978-3-642-23626-6_82
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.compmedimag.2011.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038124924
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1109/cvpr.2015.7298965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093626237
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/cvpr.2017.549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095774569
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/iccv.2015.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094045097
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1109/tbme.2015.2482387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061530018
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1109/tmi.2014.2337057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696346
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1117/12.773159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011308436
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1118/1.3222872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020826779
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1155/2013/942353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047559939
    177 rdf:type schema:CreativeWork
    178 https://www.grid.ac/institutes/grid.94365.3d schema:alternateName National Institutes of Health
    179 schema:name National Institutes of Health
    180 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...