Deep Convolutional Encoder-Decoders for Prostate Cancer Detection and Classification View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-09-04

AUTHORS

Atilla P. Kiraly , Clement Abi Nader , Ahmet Tuysuzoglu , Robert Grimm , Berthold Kiefer , Noha El-Zehiry , Ali Kamen

ABSTRACT

Prostate cancer accounts for approximately 11% of all cancer cases. Definitive diagnosis is made by histopathological examination of tissue biopsies. Recently, there have been strong correlations established between pre-biopsy multi-parametric MR image findings and the histopathology results. We investigate novel deep learning networks that provide tumor localization and classification solely based on prostate multi-parametric MR images using images with biopsy confirmed lesions. We propose to use a multi-channel image-to-image convolutional encoder-decoders where responses signify localized lesions and output channels represent different tumor classes. We take simple point locations in the labeled ground truth data and train networks to output Gaussian kernels around those points across multiple channels. This approach allows for both localization and classification within a single run. The input data consists of axial T2-weighted images, apparent diffusion coefficient maps, high b-value diffusion-weighted images, and K-trans parameter maps from 202 patients. The images were co-registered on a per patient basis and exhaustive comparisons were performed with 5-fold cross-validation across three different models with increasing complexity. The highest average classification area-under-the-curve (AUC) achieved was 83.4% using a medium complexity model, in which no skip-connection were used across layers. In individual k-folds, AUCs above 90% were achieved. The results demonstrate promise for directly determining tumor malignancy without performing an invasive biopsy procedure. More... »

PAGES

489-497

Book

TITLE

Medical Image Computing and Computer Assisted Intervention − MICCAI 2017

ISBN

978-3-319-66178-0
978-3-319-66179-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-66179-7_56

DOI

http://dx.doi.org/10.1007/978-3-319-66179-7_56

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091429475


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Siemens-Healthineers, Diagnostic Imaging, MR, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Siemens-Healthineers, Technology Center, Princeton, NJ, USA", 
            "Siemens-Healthineers, Diagnostic Imaging, MR, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiraly", 
        "givenName": "Atilla P.", 
        "id": "sg:person.01006443213.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006443213.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens-Healthineers, Diagnostic Imaging, MR, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Siemens-Healthineers, Technology Center, Princeton, NJ, USA", 
            "Siemens-Healthineers, Diagnostic Imaging, MR, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nader", 
        "givenName": "Clement Abi", 
        "id": "sg:person.013446511024.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013446511024.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens-Healthineers, Technology Center, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Siemens-Healthineers, Technology Center, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tuysuzoglu", 
        "givenName": "Ahmet", 
        "id": "sg:person.01022625527.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022625527.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens-Healthineers, Diagnostic Imaging, MR, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Siemens-Healthineers, Technology Center, Princeton, NJ, USA", 
            "Siemens-Healthineers, Diagnostic Imaging, MR, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grimm", 
        "givenName": "Robert", 
        "id": "sg:person.01077322142.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077322142.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens-Healthineers, Diagnostic Imaging, MR, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Siemens-Healthineers, Technology Center, Princeton, NJ, USA", 
            "Siemens-Healthineers, Diagnostic Imaging, MR, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiefer", 
        "givenName": "Berthold", 
        "id": "sg:person.0713657372.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713657372.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens-Healthineers, Diagnostic Imaging, MR, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Siemens-Healthineers, Technology Center, Princeton, NJ, USA", 
            "Siemens-Healthineers, Diagnostic Imaging, MR, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "El-Zehiry", 
        "givenName": "Noha", 
        "id": "sg:person.07657676251.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657676251.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens-Healthineers, Diagnostic Imaging, MR, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Siemens-Healthineers, Technology Center, Princeton, NJ, USA", 
            "Siemens-Healthineers, Diagnostic Imaging, MR, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamen", 
        "givenName": "Ali", 
        "id": "sg:person.0656777564.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656777564.42"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-09-04", 
    "datePublishedReg": "2017-09-04", 
    "description": "Prostate cancer accounts for approximately 11% of all cancer cases. Definitive diagnosis is made by histopathological examination of tissue biopsies. Recently, there have been strong correlations established between pre-biopsy multi-parametric MR image findings and the histopathology results. We investigate novel deep learning networks that provide tumor localization and classification solely based on prostate multi-parametric MR images using images with biopsy confirmed lesions. We propose to use a multi-channel image-to-image convolutional encoder-decoders where responses signify localized lesions and output channels represent different tumor classes. We take simple point locations in the labeled ground truth data and train networks to output Gaussian kernels around those points across multiple channels. This approach allows for both localization and classification within a single run. The input data consists of axial T2-weighted images, apparent diffusion coefficient maps, high b-value diffusion-weighted images, and K-trans parameter maps from 202 patients. The images were co-registered on a per patient basis and exhaustive comparisons were performed with 5-fold cross-validation across three different models with increasing complexity. The highest average classification area-under-the-curve (AUC) achieved was 83.4% using a medium complexity model, in which no skip-connection were used across layers. In individual k-folds, AUCs above 90% were achieved. The results demonstrate promise for directly determining tumor malignancy without performing an invasive biopsy procedure.", 
    "editor": [
      {
        "familyName": "Descoteaux", 
        "givenName": "Maxime", 
        "type": "Person"
      }, 
      {
        "familyName": "Maier-Hein", 
        "givenName": "Lena", 
        "type": "Person"
      }, 
      {
        "familyName": "Franz", 
        "givenName": "Alfred", 
        "type": "Person"
      }, 
      {
        "familyName": "Jannin", 
        "givenName": "Pierre", 
        "type": "Person"
      }, 
      {
        "familyName": "Collins", 
        "givenName": "D. Louis", 
        "type": "Person"
      }, 
      {
        "familyName": "Duchesne", 
        "givenName": "Simon", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-66179-7_56", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-66178-0", 
        "978-3-319-66179-7"
      ], 
      "name": "Medical Image Computing and Computer Assisted Intervention \u2212 MICCAI 2017", 
      "type": "Book"
    }, 
    "keywords": [
      "novel deep learning network", 
      "Deep Convolutional Encoder-Decoders", 
      "deep learning network", 
      "Encoder-Decoder", 
      "multi-channel images", 
      "multi-parametric MR images", 
      "ground truth data", 
      "learning network", 
      "classification area", 
      "Gaussian kernel", 
      "truth data", 
      "complexity model", 
      "exhaustive comparison", 
      "multiple channels", 
      "input data", 
      "images", 
      "network", 
      "point location", 
      "MR images", 
      "classification", 
      "output channels", 
      "single run", 
      "MR image findings", 
      "different tumor classes", 
      "complexity", 
      "maps", 
      "tumor classes", 
      "kernel", 
      "parameter maps", 
      "cancer detection", 
      "value diffusion-weighted images", 
      "different models", 
      "channels", 
      "model", 
      "detection", 
      "data", 
      "localization", 
      "prostate cancer accounts", 
      "class", 
      "location", 
      "point", 
      "coefficient (ADC) maps", 
      "run", 
      "diffusion-weighted images", 
      "results", 
      "prostate cancer detection", 
      "account", 
      "promise", 
      "area", 
      "apparent diffusion coefficient (ADC) maps", 
      "basis", 
      "layer", 
      "procedure", 
      "diffusion coefficient (ADC) maps", 
      "comparison", 
      "image findings", 
      "AUC", 
      "cases", 
      "biopsy procedures", 
      "strong correlation", 
      "curves", 
      "patient basis", 
      "tumor localization", 
      "correlation", 
      "invasive biopsy procedures", 
      "diagnosis", 
      "folds", 
      "T2-weighted images", 
      "response", 
      "findings", 
      "axial T2-weighted images", 
      "examination", 
      "cancer cases", 
      "tumor malignancy", 
      "cancer accounts", 
      "localized lesions", 
      "tissue biopsies", 
      "lesions", 
      "patients", 
      "histopathology", 
      "definitive diagnosis", 
      "histopathological examination", 
      "biopsy", 
      "approach", 
      "malignancy", 
      "pre-biopsy multi-parametric MR image findings", 
      "multi-parametric MR image findings", 
      "prostate multi-parametric MR images", 
      "simple point locations", 
      "trans parameter maps", 
      "highest average classification area", 
      "average classification area", 
      "medium complexity model", 
      "Convolutional Encoder-Decoders"
    ], 
    "name": "Deep Convolutional Encoder-Decoders for Prostate Cancer Detection and Classification", 
    "pagination": "489-497", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091429475"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-66179-7_56"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-66179-7_56", 
      "https://app.dimensions.ai/details/publication/pub.1091429475"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_235.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-66179-7_56"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66179-7_56'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66179-7_56'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66179-7_56'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-66179-7_56'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      23 PREDICATES      119 URIs      112 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-66179-7_56 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ndc7d5efdfacd44359c11d4be2062acb3
4 schema:datePublished 2017-09-04
5 schema:datePublishedReg 2017-09-04
6 schema:description Prostate cancer accounts for approximately 11% of all cancer cases. Definitive diagnosis is made by histopathological examination of tissue biopsies. Recently, there have been strong correlations established between pre-biopsy multi-parametric MR image findings and the histopathology results. We investigate novel deep learning networks that provide tumor localization and classification solely based on prostate multi-parametric MR images using images with biopsy confirmed lesions. We propose to use a multi-channel image-to-image convolutional encoder-decoders where responses signify localized lesions and output channels represent different tumor classes. We take simple point locations in the labeled ground truth data and train networks to output Gaussian kernels around those points across multiple channels. This approach allows for both localization and classification within a single run. The input data consists of axial T2-weighted images, apparent diffusion coefficient maps, high b-value diffusion-weighted images, and K-trans parameter maps from 202 patients. The images were co-registered on a per patient basis and exhaustive comparisons were performed with 5-fold cross-validation across three different models with increasing complexity. The highest average classification area-under-the-curve (AUC) achieved was 83.4% using a medium complexity model, in which no skip-connection were used across layers. In individual k-folds, AUCs above 90% were achieved. The results demonstrate promise for directly determining tumor malignancy without performing an invasive biopsy procedure.
7 schema:editor Nf787f320e8bb40a9a111543b3989dc44
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ncc7c60e2df6147b285bd9c80ea45bb35
12 schema:keywords AUC
13 Convolutional Encoder-Decoders
14 Deep Convolutional Encoder-Decoders
15 Encoder-Decoder
16 Gaussian kernel
17 MR image findings
18 MR images
19 T2-weighted images
20 account
21 apparent diffusion coefficient (ADC) maps
22 approach
23 area
24 average classification area
25 axial T2-weighted images
26 basis
27 biopsy
28 biopsy procedures
29 cancer accounts
30 cancer cases
31 cancer detection
32 cases
33 channels
34 class
35 classification
36 classification area
37 coefficient (ADC) maps
38 comparison
39 complexity
40 complexity model
41 correlation
42 curves
43 data
44 deep learning network
45 definitive diagnosis
46 detection
47 diagnosis
48 different models
49 different tumor classes
50 diffusion coefficient (ADC) maps
51 diffusion-weighted images
52 examination
53 exhaustive comparison
54 findings
55 folds
56 ground truth data
57 highest average classification area
58 histopathological examination
59 histopathology
60 image findings
61 images
62 input data
63 invasive biopsy procedures
64 kernel
65 layer
66 learning network
67 lesions
68 localization
69 localized lesions
70 location
71 malignancy
72 maps
73 medium complexity model
74 model
75 multi-channel images
76 multi-parametric MR image findings
77 multi-parametric MR images
78 multiple channels
79 network
80 novel deep learning network
81 output channels
82 parameter maps
83 patient basis
84 patients
85 point
86 point location
87 pre-biopsy multi-parametric MR image findings
88 procedure
89 promise
90 prostate cancer accounts
91 prostate cancer detection
92 prostate multi-parametric MR images
93 response
94 results
95 run
96 simple point locations
97 single run
98 strong correlation
99 tissue biopsies
100 trans parameter maps
101 truth data
102 tumor classes
103 tumor localization
104 tumor malignancy
105 value diffusion-weighted images
106 schema:name Deep Convolutional Encoder-Decoders for Prostate Cancer Detection and Classification
107 schema:pagination 489-497
108 schema:productId N0b7135ff79704fe2b5f377a2f5d0a38c
109 N9a1ac8e995994e5e9ac07ee89c7b9851
110 schema:publisher N6111958a304041ae9ca5a62b6d340a48
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091429475
112 https://doi.org/10.1007/978-3-319-66179-7_56
113 schema:sdDatePublished 2022-01-01T19:14
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher N77e2ca9afda549f6aa0a28ab99fe345b
116 schema:url https://doi.org/10.1007/978-3-319-66179-7_56
117 sgo:license sg:explorer/license/
118 sgo:sdDataset chapters
119 rdf:type schema:Chapter
120 N0b7135ff79704fe2b5f377a2f5d0a38c schema:name doi
121 schema:value 10.1007/978-3-319-66179-7_56
122 rdf:type schema:PropertyValue
123 N2f1245d8dce14a51a7b0dfdbd7f63888 schema:familyName Franz
124 schema:givenName Alfred
125 rdf:type schema:Person
126 N37888393508446c394252f41f8e15e5a schema:familyName Jannin
127 schema:givenName Pierre
128 rdf:type schema:Person
129 N4c21d6f724bd45109da846f21ae768af schema:familyName Collins
130 schema:givenName D. Louis
131 rdf:type schema:Person
132 N608047029518414b95d48717fea39f01 rdf:first sg:person.01077322142.08
133 rdf:rest N88f4477db3324537a8c7478780d1cb5e
134 N6111958a304041ae9ca5a62b6d340a48 schema:name Springer Nature
135 rdf:type schema:Organisation
136 N64b5d99455ea4ed9b0a1a44e76caf409 rdf:first sg:person.01022625527.18
137 rdf:rest N608047029518414b95d48717fea39f01
138 N661befe8e83341bf9f0601f584da2d01 rdf:first N4c21d6f724bd45109da846f21ae768af
139 rdf:rest N796f3cbe195f4418b668eba408bca48f
140 N77e2ca9afda549f6aa0a28ab99fe345b schema:name Springer Nature - SN SciGraph project
141 rdf:type schema:Organization
142 N796f3cbe195f4418b668eba408bca48f rdf:first Nc122d704b750410d85a34cfee0611cdf
143 rdf:rest rdf:nil
144 N83c573306b334ea9aff59753269e03df schema:familyName Maier-Hein
145 schema:givenName Lena
146 rdf:type schema:Person
147 N8588355f83114e1fbbd1f573251cfb51 rdf:first N37888393508446c394252f41f8e15e5a
148 rdf:rest N661befe8e83341bf9f0601f584da2d01
149 N88f4477db3324537a8c7478780d1cb5e rdf:first sg:person.0713657372.99
150 rdf:rest Nd7e34c1106ad4167aa06d7da9481f5dc
151 N8f0f0d0644e34be0ba77e5b86ceea75f rdf:first N2f1245d8dce14a51a7b0dfdbd7f63888
152 rdf:rest N8588355f83114e1fbbd1f573251cfb51
153 N9a1ac8e995994e5e9ac07ee89c7b9851 schema:name dimensions_id
154 schema:value pub.1091429475
155 rdf:type schema:PropertyValue
156 N9f6d99420e6648469b439b9ef479804f rdf:first sg:person.013446511024.00
157 rdf:rest N64b5d99455ea4ed9b0a1a44e76caf409
158 Nc122d704b750410d85a34cfee0611cdf schema:familyName Duchesne
159 schema:givenName Simon
160 rdf:type schema:Person
161 Ncc7c60e2df6147b285bd9c80ea45bb35 schema:isbn 978-3-319-66178-0
162 978-3-319-66179-7
163 schema:name Medical Image Computing and Computer Assisted Intervention − MICCAI 2017
164 rdf:type schema:Book
165 Nd58d4612aced4461bee22d8404fcdb96 rdf:first N83c573306b334ea9aff59753269e03df
166 rdf:rest N8f0f0d0644e34be0ba77e5b86ceea75f
167 Nd7e34c1106ad4167aa06d7da9481f5dc rdf:first sg:person.07657676251.51
168 rdf:rest Nfe20fd5f9d92465b8f2092223836917a
169 Ndc7d5efdfacd44359c11d4be2062acb3 rdf:first sg:person.01006443213.30
170 rdf:rest N9f6d99420e6648469b439b9ef479804f
171 Neaf08d32925042b289a54338744fdad6 schema:familyName Descoteaux
172 schema:givenName Maxime
173 rdf:type schema:Person
174 Nf787f320e8bb40a9a111543b3989dc44 rdf:first Neaf08d32925042b289a54338744fdad6
175 rdf:rest Nd58d4612aced4461bee22d8404fcdb96
176 Nfe20fd5f9d92465b8f2092223836917a rdf:first sg:person.0656777564.42
177 rdf:rest rdf:nil
178 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
179 schema:name Information and Computing Sciences
180 rdf:type schema:DefinedTerm
181 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
182 schema:name Artificial Intelligence and Image Processing
183 rdf:type schema:DefinedTerm
184 sg:person.01006443213.30 schema:affiliation grid-institutes:None
185 schema:familyName Kiraly
186 schema:givenName Atilla P.
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006443213.30
188 rdf:type schema:Person
189 sg:person.01022625527.18 schema:affiliation grid-institutes:None
190 schema:familyName Tuysuzoglu
191 schema:givenName Ahmet
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022625527.18
193 rdf:type schema:Person
194 sg:person.01077322142.08 schema:affiliation grid-institutes:None
195 schema:familyName Grimm
196 schema:givenName Robert
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077322142.08
198 rdf:type schema:Person
199 sg:person.013446511024.00 schema:affiliation grid-institutes:None
200 schema:familyName Nader
201 schema:givenName Clement Abi
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013446511024.00
203 rdf:type schema:Person
204 sg:person.0656777564.42 schema:affiliation grid-institutes:None
205 schema:familyName Kamen
206 schema:givenName Ali
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656777564.42
208 rdf:type schema:Person
209 sg:person.0713657372.99 schema:affiliation grid-institutes:None
210 schema:familyName Kiefer
211 schema:givenName Berthold
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713657372.99
213 rdf:type schema:Person
214 sg:person.07657676251.51 schema:affiliation grid-institutes:None
215 schema:familyName El-Zehiry
216 schema:givenName Noha
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657676251.51
218 rdf:type schema:Person
219 grid-institutes:None schema:alternateName Siemens-Healthineers, Diagnostic Imaging, MR, Erlangen, Germany
220 Siemens-Healthineers, Technology Center, Princeton, NJ, USA
221 schema:name Siemens-Healthineers, Diagnostic Imaging, MR, Erlangen, Germany
222 Siemens-Healthineers, Technology Center, Princeton, NJ, USA
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...