Ontology type: schema:Chapter
2017-10-26
AUTHORSGeorgi Evtimov , Stefka Fidanova
ABSTRACTEvery day different companies in industry have to solve many optimization problems. One of them is cutting out of linear materials, like steel or aluminum profiles, steel or wood beams and so on. It is so called cutting stocks problem (CSP). It is well known NP-hard combinatorial optimization problem. The accurate and fast cutting out is very important element from the working process. The aim in CSP is to cut items from stocks of certain length, minimizing the total number of stocks (waste). The computational time increases exponentially when the number of items increase. Finding the optimal solution for large-sized problems for a reasonable time is impossible. Therefore, exact algorithms and traditional numerical methods can be apply of only on very small problems. Mostly appropriate methods for this kind of problems are methods based on stochastic search or so called metaheuristic methods. We propose a variant of Ant Colony Optimization (ACO) algorithm to solve linear cutting stocks problem. More... »
PAGES25-31
Advanced Computing in Industrial Mathematics
ISBN
978-3-319-65529-1
978-3-319-65530-7
http://scigraph.springernature.com/pub.10.1007/978-3-319-65530-7_3
DOIhttp://dx.doi.org/10.1007/978-3-319-65530-7_3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1092380968
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.424988.b",
"name": [
"Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Evtimov",
"givenName": "Georgi",
"id": "sg:person.07366160356.00",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07366160356.00"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.424988.b",
"name": [
"Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Fidanova",
"givenName": "Stefka",
"id": "sg:person.011173106320.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
],
"type": "Person"
}
],
"datePublished": "2017-10-26",
"datePublishedReg": "2017-10-26",
"description": "Every day different companies in industry have to solve many optimization problems. One of them is cutting out of linear materials, like steel or aluminum profiles, steel or wood beams and so on. It is so called cutting stocks problem (CSP). It is well known NP-hard combinatorial optimization problem. The accurate and fast cutting out is very important element from the working process. The aim in CSP is to cut items from stocks of certain length, minimizing the total number of stocks (waste). The computational time increases exponentially when the number of items increase. Finding the optimal solution for large-sized problems for a reasonable time is impossible. Therefore, exact algorithms and traditional numerical methods can be apply of only on very small problems. Mostly appropriate methods for this kind of problems are methods based on stochastic search or so called metaheuristic methods. We propose a variant of Ant Colony Optimization (ACO) algorithm to solve linear cutting stocks problem.",
"editor": [
{
"familyName": "Georgiev",
"givenName": "Krassimir",
"type": "Person"
},
{
"familyName": "Todorov",
"givenName": "Michail",
"type": "Person"
},
{
"familyName": "Georgiev",
"givenName": "Ivan",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-65530-7_3",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-65529-1",
"978-3-319-65530-7"
],
"name": "Advanced Computing in Industrial Mathematics",
"type": "Book"
},
"keywords": [
"ant colony optimization algorithm",
"colony optimization algorithm",
"optimization problem",
"NP-hard combinatorial optimization problem",
"optimization algorithm",
"combinatorial optimization problems",
"traditional numerical methods",
"stock problem",
"cutting stock problem",
"large-sized problems",
"stochastic search",
"kind of problem",
"numerical method",
"metaheuristic methods",
"optimal solution",
"computational time",
"small problems",
"exact algorithm",
"linear materials",
"reasonable time",
"algorithm",
"problem",
"certain length",
"wood beams",
"beam",
"number of items",
"solution",
"appropriate method",
"number",
"apply",
"working process",
"total number",
"kind",
"time",
"search",
"elements",
"aluminum profiles",
"length",
"process",
"CSP",
"profile",
"variants",
"materials",
"important element",
"different companies",
"stocks",
"industry",
"items",
"companies",
"steel",
"aim",
"method"
],
"name": "Ant Colony Optimization Algorithm for 1D Cutting Stock Problem",
"pagination": "25-31",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1092380968"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-65530-7_3"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-65530-7_3",
"https://app.dimensions.ai/details/publication/pub.1092380968"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:48",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_446.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-65530-7_3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-65530-7_3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-65530-7_3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-65530-7_3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-65530-7_3'
This table displays all metadata directly associated to this object as RDF triples.
137 TRIPLES
23 PREDICATES
79 URIs
70 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-65530-7_3 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0103 |
3 | ″ | ″ | anzsrc-for:08 |
4 | ″ | ″ | anzsrc-for:0802 |
5 | ″ | schema:author | Ne9ddb29655b34b799606bd3486b22f9d |
6 | ″ | schema:datePublished | 2017-10-26 |
7 | ″ | schema:datePublishedReg | 2017-10-26 |
8 | ″ | schema:description | Every day different companies in industry have to solve many optimization problems. One of them is cutting out of linear materials, like steel or aluminum profiles, steel or wood beams and so on. It is so called cutting stocks problem (CSP). It is well known NP-hard combinatorial optimization problem. The accurate and fast cutting out is very important element from the working process. The aim in CSP is to cut items from stocks of certain length, minimizing the total number of stocks (waste). The computational time increases exponentially when the number of items increase. Finding the optimal solution for large-sized problems for a reasonable time is impossible. Therefore, exact algorithms and traditional numerical methods can be apply of only on very small problems. Mostly appropriate methods for this kind of problems are methods based on stochastic search or so called metaheuristic methods. We propose a variant of Ant Colony Optimization (ACO) algorithm to solve linear cutting stocks problem. |
9 | ″ | schema:editor | N14150fe0a174422bbd34e2c42ca93b94 |
10 | ″ | schema:genre | chapter |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N546536332bb944a1b87fca35191c4279 |
14 | ″ | schema:keywords | CSP |
15 | ″ | ″ | NP-hard combinatorial optimization problem |
16 | ″ | ″ | aim |
17 | ″ | ″ | algorithm |
18 | ″ | ″ | aluminum profiles |
19 | ″ | ″ | ant colony optimization algorithm |
20 | ″ | ″ | apply |
21 | ″ | ″ | appropriate method |
22 | ″ | ″ | beam |
23 | ″ | ″ | certain length |
24 | ″ | ″ | colony optimization algorithm |
25 | ″ | ″ | combinatorial optimization problems |
26 | ″ | ″ | companies |
27 | ″ | ″ | computational time |
28 | ″ | ″ | cutting stock problem |
29 | ″ | ″ | different companies |
30 | ″ | ″ | elements |
31 | ″ | ″ | exact algorithm |
32 | ″ | ″ | important element |
33 | ″ | ″ | industry |
34 | ″ | ″ | items |
35 | ″ | ″ | kind |
36 | ″ | ″ | kind of problem |
37 | ″ | ″ | large-sized problems |
38 | ″ | ″ | length |
39 | ″ | ″ | linear materials |
40 | ″ | ″ | materials |
41 | ″ | ″ | metaheuristic methods |
42 | ″ | ″ | method |
43 | ″ | ″ | number |
44 | ″ | ″ | number of items |
45 | ″ | ″ | numerical method |
46 | ″ | ″ | optimal solution |
47 | ″ | ″ | optimization algorithm |
48 | ″ | ″ | optimization problem |
49 | ″ | ″ | problem |
50 | ″ | ″ | process |
51 | ″ | ″ | profile |
52 | ″ | ″ | reasonable time |
53 | ″ | ″ | search |
54 | ″ | ″ | small problems |
55 | ″ | ″ | solution |
56 | ″ | ″ | steel |
57 | ″ | ″ | stochastic search |
58 | ″ | ″ | stock problem |
59 | ″ | ″ | stocks |
60 | ″ | ″ | time |
61 | ″ | ″ | total number |
62 | ″ | ″ | traditional numerical methods |
63 | ″ | ″ | variants |
64 | ″ | ″ | wood beams |
65 | ″ | ″ | working process |
66 | ″ | schema:name | Ant Colony Optimization Algorithm for 1D Cutting Stock Problem |
67 | ″ | schema:pagination | 25-31 |
68 | ″ | schema:productId | N0d35a497f0c841ffba46b124187adc3a |
69 | ″ | ″ | N78ea5a8a00f5488291ddc2c9fcb970d7 |
70 | ″ | schema:publisher | N6b4c6e36dfd04c65b0b9782aca854398 |
71 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1092380968 |
72 | ″ | ″ | https://doi.org/10.1007/978-3-319-65530-7_3 |
73 | ″ | schema:sdDatePublished | 2022-05-20T07:48 |
74 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
75 | ″ | schema:sdPublisher | N999a5cf11e8c4d158141a72c42024aa9 |
76 | ″ | schema:url | https://doi.org/10.1007/978-3-319-65530-7_3 |
77 | ″ | sgo:license | sg:explorer/license/ |
78 | ″ | sgo:sdDataset | chapters |
79 | ″ | rdf:type | schema:Chapter |
80 | N0d35a497f0c841ffba46b124187adc3a | schema:name | dimensions_id |
81 | ″ | schema:value | pub.1092380968 |
82 | ″ | rdf:type | schema:PropertyValue |
83 | N14150fe0a174422bbd34e2c42ca93b94 | rdf:first | Nbe40bcaefb394e69b9a6c9b62ca16087 |
84 | ″ | rdf:rest | N931dd514afbc42d78fa3a475014c37c4 |
85 | N546536332bb944a1b87fca35191c4279 | schema:isbn | 978-3-319-65529-1 |
86 | ″ | ″ | 978-3-319-65530-7 |
87 | ″ | schema:name | Advanced Computing in Industrial Mathematics |
88 | ″ | rdf:type | schema:Book |
89 | N6b4c6e36dfd04c65b0b9782aca854398 | schema:name | Springer Nature |
90 | ″ | rdf:type | schema:Organisation |
91 | N78ea5a8a00f5488291ddc2c9fcb970d7 | schema:name | doi |
92 | ″ | schema:value | 10.1007/978-3-319-65530-7_3 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | N931dd514afbc42d78fa3a475014c37c4 | rdf:first | Ndd0c275c082b4fdbb226d79c1eb4e314 |
95 | ″ | rdf:rest | Na6dce841dcb348ed84f6558303843c5c |
96 | N999a5cf11e8c4d158141a72c42024aa9 | schema:name | Springer Nature - SN SciGraph project |
97 | ″ | rdf:type | schema:Organization |
98 | N9a1f45e12b9c47c0aa6f43fc5089b8f2 | rdf:first | sg:person.011173106320.18 |
99 | ″ | rdf:rest | rdf:nil |
100 | Na6dce841dcb348ed84f6558303843c5c | rdf:first | Nd557b1a087bb4486b939e8caa8d4745d |
101 | ″ | rdf:rest | rdf:nil |
102 | Nbe40bcaefb394e69b9a6c9b62ca16087 | schema:familyName | Georgiev |
103 | ″ | schema:givenName | Krassimir |
104 | ″ | rdf:type | schema:Person |
105 | Nd557b1a087bb4486b939e8caa8d4745d | schema:familyName | Georgiev |
106 | ″ | schema:givenName | Ivan |
107 | ″ | rdf:type | schema:Person |
108 | Ndd0c275c082b4fdbb226d79c1eb4e314 | schema:familyName | Todorov |
109 | ″ | schema:givenName | Michail |
110 | ″ | rdf:type | schema:Person |
111 | Ne9ddb29655b34b799606bd3486b22f9d | rdf:first | sg:person.07366160356.00 |
112 | ″ | rdf:rest | N9a1f45e12b9c47c0aa6f43fc5089b8f2 |
113 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
114 | ″ | schema:name | Mathematical Sciences |
115 | ″ | rdf:type | schema:DefinedTerm |
116 | anzsrc-for:0103 | schema:inDefinedTermSet | anzsrc-for: |
117 | ″ | schema:name | Numerical and Computational Mathematics |
118 | ″ | rdf:type | schema:DefinedTerm |
119 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
120 | ″ | schema:name | Information and Computing Sciences |
121 | ″ | rdf:type | schema:DefinedTerm |
122 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
123 | ″ | schema:name | Computation Theory and Mathematics |
124 | ″ | rdf:type | schema:DefinedTerm |
125 | sg:person.011173106320.18 | schema:affiliation | grid-institutes:grid.424988.b |
126 | ″ | schema:familyName | Fidanova |
127 | ″ | schema:givenName | Stefka |
128 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18 |
129 | ″ | rdf:type | schema:Person |
130 | sg:person.07366160356.00 | schema:affiliation | grid-institutes:grid.424988.b |
131 | ″ | schema:familyName | Evtimov |
132 | ″ | schema:givenName | Georgi |
133 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07366160356.00 |
134 | ″ | rdf:type | schema:Person |
135 | grid-institutes:grid.424988.b | schema:alternateName | Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria |
136 | ″ | schema:name | Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria |
137 | ″ | rdf:type | schema:Organization |