Asymptotic Study of the Nonlinear Velocity Problem for the Oscillatory Non-Newtonian Flow in a Straight Channel View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-10-26

AUTHORS

Stefan Radev , Sonia Tabakova , Nikolay Kutev

ABSTRACT

The studies of non-Newtonian flows, such as blood flows in arteries and polymer flows in channels have very important applications. The non-Newtonian fluid viscosity is modelled by the Carreau model (nonlinear with respect to the viscosity dependence on the shear rate). In the present paper the oscillatory flow of Newtonian and non-Newtonian fluids in a straight channel is studied analytically and numerically. The flow in an infinite straight channel is considered, which leads to a parabolic non-linear equation for the longitudinal velocity. The Newtonian flow velocity is found analytically, while the non-Newtonian velocity is found numerically by the finite-difference Crank-Nicolson method. In parallel, the non-Newtonian (Carreau) velocity is developed in an asymptotic expansion with respect to a small parameter. The zero-th order term of this expansion is exactly the Newtonian velocity solution. The first order term of the velocity expansion is found analytically in terms of higher order harmonics in time. As an example, the polymer solution HEC 0.5% is considered. It is shown that the obtained asymptotic solution and the numerical solution for the non-Newtonian (Carreau) velocity are close for different values of the small parameter. More... »

PAGES

159-168

Book

TITLE

Advanced Computing in Industrial Mathematics

ISBN

978-3-319-65529-1
978-3-319-65530-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-65530-7_15

DOI

http://dx.doi.org/10.1007/978-3-319-65530-7_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092380962


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.425015.7", 
          "name": [
            "Institute of Mechanics, BAS, Acad. G. Bontchev str., bl. 4, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Radev", 
        "givenName": "Stefan", 
        "id": "sg:person.011141600673.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011141600673.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.425015.7", 
          "name": [
            "Institute of Mechanics, BAS, Acad. G. Bontchev str., bl. 4, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tabakova", 
        "givenName": "Sonia", 
        "id": "sg:person.01147364056.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147364056.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mathematics and Informatics", 
          "id": "https://www.grid.ac/institutes/grid.425011.3", 
          "name": [
            "Institute of Mathematics and Informatics, BAS, Acad. G. Bontchev str., bl. 9, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kutev", 
        "givenName": "Nikolay", 
        "id": "sg:person.014127502673.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014127502673.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/fld.1786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024442871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112008003790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053861409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112008003790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053861409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.066302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060733918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.066302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060733918"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10-26", 
    "datePublishedReg": "2017-10-26", 
    "description": "The studies of non-Newtonian flows, such as blood flows in arteries and polymer flows in channels have very important applications. The non-Newtonian fluid viscosity is modelled by the Carreau model (nonlinear with respect to the viscosity dependence on the shear rate). In the present paper the oscillatory flow of Newtonian and non-Newtonian fluids in a straight channel is studied analytically and numerically. The flow in an infinite straight channel is considered, which leads to a parabolic non-linear equation for the longitudinal velocity. The Newtonian flow velocity is found analytically, while the non-Newtonian velocity is found numerically by the finite-difference Crank-Nicolson method. In parallel, the non-Newtonian (Carreau) velocity is developed in an asymptotic expansion with respect to a small parameter. The zero-th order term of this expansion is exactly the Newtonian velocity solution. The first order term of the velocity expansion is found analytically in terms of higher order harmonics in time. As an example, the polymer solution HEC 0.5% is considered. It is shown that the obtained asymptotic solution and the numerical solution for the non-Newtonian (Carreau) velocity are close for different values of the small parameter.", 
    "editor": [
      {
        "familyName": "Georgiev", 
        "givenName": "Krassimir", 
        "type": "Person"
      }, 
      {
        "familyName": "Todorov", 
        "givenName": "Michail", 
        "type": "Person"
      }, 
      {
        "familyName": "Georgiev", 
        "givenName": "Ivan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-65530-7_15", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-65529-1", 
        "978-3-319-65530-7"
      ], 
      "name": "Advanced Computing in Industrial Mathematics", 
      "type": "Book"
    }, 
    "name": "Asymptotic Study of the Nonlinear Velocity Problem for the Oscillatory Non-Newtonian Flow in a Straight Channel", 
    "pagination": "159-168", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-65530-7_15"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "30ef6dd3dd301523ac474e2539367dc4ad26034c5cbe503d54950146e148a465"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092380962"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-65530-7_15", 
      "https://app.dimensions.ai/details/publication/pub.1092380962"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100801_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-65530-7_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-65530-7_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-65530-7_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-65530-7_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-65530-7_15'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      23 PREDICATES      29 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-65530-7_15 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N5b1c00bdd31e4b87b5d4bd87769b071a
4 schema:citation https://doi.org/10.1002/fld.1786
5 https://doi.org/10.1017/s0022112008003790
6 https://doi.org/10.1103/physreve.72.066302
7 schema:datePublished 2017-10-26
8 schema:datePublishedReg 2017-10-26
9 schema:description The studies of non-Newtonian flows, such as blood flows in arteries and polymer flows in channels have very important applications. The non-Newtonian fluid viscosity is modelled by the Carreau model (nonlinear with respect to the viscosity dependence on the shear rate). In the present paper the oscillatory flow of Newtonian and non-Newtonian fluids in a straight channel is studied analytically and numerically. The flow in an infinite straight channel is considered, which leads to a parabolic non-linear equation for the longitudinal velocity. The Newtonian flow velocity is found analytically, while the non-Newtonian velocity is found numerically by the finite-difference Crank-Nicolson method. In parallel, the non-Newtonian (Carreau) velocity is developed in an asymptotic expansion with respect to a small parameter. The zero-th order term of this expansion is exactly the Newtonian velocity solution. The first order term of the velocity expansion is found analytically in terms of higher order harmonics in time. As an example, the polymer solution HEC 0.5% is considered. It is shown that the obtained asymptotic solution and the numerical solution for the non-Newtonian (Carreau) velocity are close for different values of the small parameter.
10 schema:editor N36b694b3d67b4f4d81d16cda474d776a
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N5f813c7a01fe4496a5ccdf324d9812ca
15 schema:name Asymptotic Study of the Nonlinear Velocity Problem for the Oscillatory Non-Newtonian Flow in a Straight Channel
16 schema:pagination 159-168
17 schema:productId N51889e45c06b476cbe1b505cac5787d5
18 Ndec114a7899d46ffa77d68f5f178b5f8
19 Nf426bfbf77d448b2b0de5b46866b15fe
20 schema:publisher Ndaa049a95d1d40a1b5e92e6a3825f524
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092380962
22 https://doi.org/10.1007/978-3-319-65530-7_15
23 schema:sdDatePublished 2019-04-16T05:01
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N62834b6423d848058305e5a140ba4d00
26 schema:url https://link.springer.com/10.1007%2F978-3-319-65530-7_15
27 sgo:license sg:explorer/license/
28 sgo:sdDataset chapters
29 rdf:type schema:Chapter
30 N11eb25a9c51a4fa1bc0a96f9e65fe1c0 rdf:first sg:person.014127502673.17
31 rdf:rest rdf:nil
32 N19f362e53fdf4da29a349d8eb0d30384 schema:familyName Todorov
33 schema:givenName Michail
34 rdf:type schema:Person
35 N281c6bb1a0ed4c47a3919a16a87c185f rdf:first N83f4c6a8935946e1b8c5d26e0d04707f
36 rdf:rest rdf:nil
37 N36b694b3d67b4f4d81d16cda474d776a rdf:first Nf86c755c022041e59d7f448e0c2dd2c2
38 rdf:rest N932bbf453d6f4c3facbf80b60b1a5e2f
39 N51889e45c06b476cbe1b505cac5787d5 schema:name readcube_id
40 schema:value 30ef6dd3dd301523ac474e2539367dc4ad26034c5cbe503d54950146e148a465
41 rdf:type schema:PropertyValue
42 N5b1c00bdd31e4b87b5d4bd87769b071a rdf:first sg:person.011141600673.63
43 rdf:rest Ne836d473f6f04a0690390901aec188bf
44 N5f813c7a01fe4496a5ccdf324d9812ca schema:isbn 978-3-319-65529-1
45 978-3-319-65530-7
46 schema:name Advanced Computing in Industrial Mathematics
47 rdf:type schema:Book
48 N62834b6423d848058305e5a140ba4d00 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N83f4c6a8935946e1b8c5d26e0d04707f schema:familyName Georgiev
51 schema:givenName Ivan
52 rdf:type schema:Person
53 N932bbf453d6f4c3facbf80b60b1a5e2f rdf:first N19f362e53fdf4da29a349d8eb0d30384
54 rdf:rest N281c6bb1a0ed4c47a3919a16a87c185f
55 Ndaa049a95d1d40a1b5e92e6a3825f524 schema:location Cham
56 schema:name Springer International Publishing
57 rdf:type schema:Organisation
58 Ndec114a7899d46ffa77d68f5f178b5f8 schema:name dimensions_id
59 schema:value pub.1092380962
60 rdf:type schema:PropertyValue
61 Ne836d473f6f04a0690390901aec188bf rdf:first sg:person.01147364056.61
62 rdf:rest N11eb25a9c51a4fa1bc0a96f9e65fe1c0
63 Nf426bfbf77d448b2b0de5b46866b15fe schema:name doi
64 schema:value 10.1007/978-3-319-65530-7_15
65 rdf:type schema:PropertyValue
66 Nf86c755c022041e59d7f448e0c2dd2c2 schema:familyName Georgiev
67 schema:givenName Krassimir
68 rdf:type schema:Person
69 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
70 schema:name Engineering
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
73 schema:name Interdisciplinary Engineering
74 rdf:type schema:DefinedTerm
75 sg:person.011141600673.63 schema:affiliation https://www.grid.ac/institutes/grid.425015.7
76 schema:familyName Radev
77 schema:givenName Stefan
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011141600673.63
79 rdf:type schema:Person
80 sg:person.01147364056.61 schema:affiliation https://www.grid.ac/institutes/grid.425015.7
81 schema:familyName Tabakova
82 schema:givenName Sonia
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147364056.61
84 rdf:type schema:Person
85 sg:person.014127502673.17 schema:affiliation https://www.grid.ac/institutes/grid.425011.3
86 schema:familyName Kutev
87 schema:givenName Nikolay
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014127502673.17
89 rdf:type schema:Person
90 https://doi.org/10.1002/fld.1786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024442871
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1017/s0022112008003790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053861409
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1103/physreve.72.066302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060733918
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.425011.3 schema:alternateName Institute of Mathematics and Informatics
97 schema:name Institute of Mathematics and Informatics, BAS, Acad. G. Bontchev str., bl. 9, 1113, Sofia, Bulgaria
98 rdf:type schema:Organization
99 https://www.grid.ac/institutes/grid.425015.7 schema:alternateName Institute of Mechanics
100 schema:name Institute of Mechanics, BAS, Acad. G. Bontchev str., bl. 4, 1113, Sofia, Bulgaria
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...