First Experiences Accelerating Smith-Waterman on Intel’s Knights Landing Processor View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

Enzo Rucci , Carlos Garcia , Guillermo Botella , Armando De Giusti , Marcelo Naiouf , Manuel Prieto-Matias

ABSTRACT

The well-known Smith-Waterman (SW) algorithm is the most commonly used method for local sequence alignments. However, SW is very computationally demanding for large protein databases. There are several implementations that take advantage of parallel capacities on many-cores, FPGAs or GPUs, in order to increase the alignment throughtput. In this paper, we have explored SW acceleration on Intel KNL processor. The novelty of this architecture requires the revision of previous programming and optimization techniques on many-core architectures. To the best of authors knowledge, this is the first KNL architecture assessment for SW algorithm. Our evaluation, using the renowned Environmental NR database as benchmark, has shown that multi-threading and SIMD exploitation showed competitive performance (351 GCUPS) in comparison with other implementations. More... »

PAGES

569-579

Book

TITLE

Algorithms and Architectures for Parallel Processing

ISBN

978-3-319-65481-2
978-3-319-65482-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-65482-9_42

DOI

http://dx.doi.org/10.1007/978-3-319-65482-9_42

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091146251


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of La Plata", 
          "id": "https://www.grid.ac/institutes/grid.9499.d", 
          "name": [
            "Universidad Nacional de La Plata"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rucci", 
        "givenName": "Enzo", 
        "id": "sg:person.0737301461.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737301461.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Complutense University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.4795.f", 
          "name": [
            "Universidad Complutense de Madrid"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garcia", 
        "givenName": "Carlos", 
        "id": "sg:person.012762576303.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012762576303.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Complutense University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.4795.f", 
          "name": [
            "Universidad Complutense de Madrid"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Botella", 
        "givenName": "Guillermo", 
        "id": "sg:person.016574110506.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016574110506.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of La Plata", 
          "id": "https://www.grid.ac/institutes/grid.9499.d", 
          "name": [
            "Universidad Nacional de La Plata"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Giusti", 
        "givenName": "Armando", 
        "id": "sg:person.013017320261.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013017320261.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of La Plata", 
          "id": "https://www.grid.ac/institutes/grid.9499.d", 
          "name": [
            "Universidad Nacional de La Plata"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naiouf", 
        "givenName": "Marcelo", 
        "id": "sg:person.016551155603.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016551155603.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Complutense University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.4795.f", 
          "name": [
            "Universidad Complutense de Madrid"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prieto-Matias", 
        "givenName": "Manuel", 
        "id": "sg:person.011517105361.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517105361.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-8-85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010432928", 
          "https://doi.org/10.1186/1471-2105-8-85"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010432928", 
          "https://doi.org/10.1186/1471-2105-8-85"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010513713", 
          "https://doi.org/10.1186/1471-2105-12-221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(81)90087-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024589839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(82)90398-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025042064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.8.699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025315480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-14-117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032649695", 
          "https://doi.org/10.1186/1471-2105-14-117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpe.3598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035010756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-016-0930-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052522445", 
          "https://doi.org/10.1186/s12859-016-0930-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mm.2016.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061409009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1094342016654215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063977417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1094342016654215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063977417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/bibm.2015.7359735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093245214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ahs.2011.5963957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094326290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/asap.2014.6868657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094370952"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "The well-known Smith-Waterman (SW) algorithm is the most commonly used method for local sequence alignments. However, SW is very computationally demanding for large protein databases. There are several implementations that take advantage of parallel capacities on many-cores, FPGAs or GPUs, in order to increase the alignment throughtput. In this paper, we have explored SW acceleration on Intel KNL processor. The novelty of this architecture requires the revision of previous programming and optimization techniques on many-core architectures. To the best of authors knowledge, this is the first KNL architecture assessment for SW algorithm. Our evaluation, using the renowned Environmental NR database as benchmark, has shown that multi-threading and SIMD exploitation showed competitive performance (351 GCUPS) in comparison with other implementations.", 
    "editor": [
      {
        "familyName": "Ibrahim", 
        "givenName": "Shadi", 
        "type": "Person"
      }, 
      {
        "familyName": "Choo", 
        "givenName": "Kim-Kwang Raymond", 
        "type": "Person"
      }, 
      {
        "familyName": "Yan", 
        "givenName": "Zheng", 
        "type": "Person"
      }, 
      {
        "familyName": "Pedrycz", 
        "givenName": "Witold", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-65482-9_42", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-65481-2", 
        "978-3-319-65482-9"
      ], 
      "name": "Algorithms and Architectures for Parallel Processing", 
      "type": "Book"
    }, 
    "name": "First Experiences Accelerating Smith-Waterman on Intel\u2019s Knights Landing Processor", 
    "pagination": "569-579", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-65482-9_42"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0f14f18631ea50178318b1cf9478c48b88ccbfbd6b2caaae62bff5c571d9cab2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091146251"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-65482-9_42", 
      "https://app.dimensions.ai/details/publication/pub.1091146251"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000601.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-65482-9_42"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-65482-9_42'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-65482-9_42'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-65482-9_42'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-65482-9_42'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-65482-9_42 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nea4d7b1f31014a7a8a6af72caf1927da
4 schema:citation sg:pub.10.1186/1471-2105-12-221
5 sg:pub.10.1186/1471-2105-14-117
6 sg:pub.10.1186/1471-2105-8-85
7 sg:pub.10.1186/s12859-016-0930-z
8 https://doi.org/10.1002/cpe.3598
9 https://doi.org/10.1016/0022-2836(81)90087-5
10 https://doi.org/10.1016/0022-2836(82)90398-9
11 https://doi.org/10.1093/bioinformatics/16.8.699
12 https://doi.org/10.1109/ahs.2011.5963957
13 https://doi.org/10.1109/asap.2014.6868657
14 https://doi.org/10.1109/bibm.2015.7359735
15 https://doi.org/10.1109/mm.2016.25
16 https://doi.org/10.1177/1094342016654215
17 schema:datePublished 2017
18 schema:datePublishedReg 2017-01-01
19 schema:description The well-known Smith-Waterman (SW) algorithm is the most commonly used method for local sequence alignments. However, SW is very computationally demanding for large protein databases. There are several implementations that take advantage of parallel capacities on many-cores, FPGAs or GPUs, in order to increase the alignment throughtput. In this paper, we have explored SW acceleration on Intel KNL processor. The novelty of this architecture requires the revision of previous programming and optimization techniques on many-core architectures. To the best of authors knowledge, this is the first KNL architecture assessment for SW algorithm. Our evaluation, using the renowned Environmental NR database as benchmark, has shown that multi-threading and SIMD exploitation showed competitive performance (351 GCUPS) in comparison with other implementations.
20 schema:editor N35775892fe7e4efdbd9529267f060b96
21 schema:genre chapter
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N38dc88b6f309474ea0ff800e097a1e0b
25 schema:name First Experiences Accelerating Smith-Waterman on Intel’s Knights Landing Processor
26 schema:pagination 569-579
27 schema:productId N881684a00e5e4c27b935ddc38529ff6e
28 N97ebc9f3a9964078baed44d276514982
29 Nabb3c20766f44cbfb09a7cbadc59cda6
30 schema:publisher N1b2f8b065e3246939b9975786f145711
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091146251
32 https://doi.org/10.1007/978-3-319-65482-9_42
33 schema:sdDatePublished 2019-04-15T20:44
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nd0365d613a2e44c09dcf1406adbdc6de
36 schema:url http://link.springer.com/10.1007/978-3-319-65482-9_42
37 sgo:license sg:explorer/license/
38 sgo:sdDataset chapters
39 rdf:type schema:Chapter
40 N1b2f8b065e3246939b9975786f145711 schema:location Cham
41 schema:name Springer International Publishing
42 rdf:type schema:Organisation
43 N2542fc34677e4749aaa1de6a39f289f3 schema:familyName Ibrahim
44 schema:givenName Shadi
45 rdf:type schema:Person
46 N33f0686aa6a04d5b83472c165dfe5a7a rdf:first sg:person.016551155603.22
47 rdf:rest N683cd1a769444fac8f3790fde4647855
48 N35775892fe7e4efdbd9529267f060b96 rdf:first N2542fc34677e4749aaa1de6a39f289f3
49 rdf:rest Nac5baf999a1044ccb7a8c09f37bf9540
50 N38dc88b6f309474ea0ff800e097a1e0b schema:isbn 978-3-319-65481-2
51 978-3-319-65482-9
52 schema:name Algorithms and Architectures for Parallel Processing
53 rdf:type schema:Book
54 N683cd1a769444fac8f3790fde4647855 rdf:first sg:person.011517105361.24
55 rdf:rest rdf:nil
56 N7bc61f674db0422fb2de75157470bec6 schema:familyName Choo
57 schema:givenName Kim-Kwang Raymond
58 rdf:type schema:Person
59 N881684a00e5e4c27b935ddc38529ff6e schema:name readcube_id
60 schema:value 0f14f18631ea50178318b1cf9478c48b88ccbfbd6b2caaae62bff5c571d9cab2
61 rdf:type schema:PropertyValue
62 N8f80a83a222b465f8cab23e4f6ed8083 rdf:first sg:person.016574110506.55
63 rdf:rest Nfdf81b233f1d4525835226f8a62d91fe
64 N92e968b6cd8e45b9aebce8914ca59cf5 rdf:first Nb057043a84ad4e688be00dccfd6276f3
65 rdf:rest Nbd6f3f48bf71461da80424601dc439b2
66 N97ebc9f3a9964078baed44d276514982 schema:name dimensions_id
67 schema:value pub.1091146251
68 rdf:type schema:PropertyValue
69 Nabb3c20766f44cbfb09a7cbadc59cda6 schema:name doi
70 schema:value 10.1007/978-3-319-65482-9_42
71 rdf:type schema:PropertyValue
72 Nac5baf999a1044ccb7a8c09f37bf9540 rdf:first N7bc61f674db0422fb2de75157470bec6
73 rdf:rest N92e968b6cd8e45b9aebce8914ca59cf5
74 Nb057043a84ad4e688be00dccfd6276f3 schema:familyName Yan
75 schema:givenName Zheng
76 rdf:type schema:Person
77 Nbd6f3f48bf71461da80424601dc439b2 rdf:first Ne2791d8b03914178adfb3eaf002cc63e
78 rdf:rest rdf:nil
79 Nce94846f44214d4ba4baac94f48b2791 rdf:first sg:person.012762576303.73
80 rdf:rest N8f80a83a222b465f8cab23e4f6ed8083
81 Nd0365d613a2e44c09dcf1406adbdc6de schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Ne2791d8b03914178adfb3eaf002cc63e schema:familyName Pedrycz
84 schema:givenName Witold
85 rdf:type schema:Person
86 Nea4d7b1f31014a7a8a6af72caf1927da rdf:first sg:person.0737301461.16
87 rdf:rest Nce94846f44214d4ba4baac94f48b2791
88 Nfdf81b233f1d4525835226f8a62d91fe rdf:first sg:person.013017320261.86
89 rdf:rest N33f0686aa6a04d5b83472c165dfe5a7a
90 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
91 schema:name Mathematical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
94 schema:name Numerical and Computational Mathematics
95 rdf:type schema:DefinedTerm
96 sg:person.011517105361.24 schema:affiliation https://www.grid.ac/institutes/grid.4795.f
97 schema:familyName Prieto-Matias
98 schema:givenName Manuel
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517105361.24
100 rdf:type schema:Person
101 sg:person.012762576303.73 schema:affiliation https://www.grid.ac/institutes/grid.4795.f
102 schema:familyName Garcia
103 schema:givenName Carlos
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012762576303.73
105 rdf:type schema:Person
106 sg:person.013017320261.86 schema:affiliation https://www.grid.ac/institutes/grid.9499.d
107 schema:familyName De Giusti
108 schema:givenName Armando
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013017320261.86
110 rdf:type schema:Person
111 sg:person.016551155603.22 schema:affiliation https://www.grid.ac/institutes/grid.9499.d
112 schema:familyName Naiouf
113 schema:givenName Marcelo
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016551155603.22
115 rdf:type schema:Person
116 sg:person.016574110506.55 schema:affiliation https://www.grid.ac/institutes/grid.4795.f
117 schema:familyName Botella
118 schema:givenName Guillermo
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016574110506.55
120 rdf:type schema:Person
121 sg:person.0737301461.16 schema:affiliation https://www.grid.ac/institutes/grid.9499.d
122 schema:familyName Rucci
123 schema:givenName Enzo
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737301461.16
125 rdf:type schema:Person
126 sg:pub.10.1186/1471-2105-12-221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010513713
127 https://doi.org/10.1186/1471-2105-12-221
128 rdf:type schema:CreativeWork
129 sg:pub.10.1186/1471-2105-14-117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032649695
130 https://doi.org/10.1186/1471-2105-14-117
131 rdf:type schema:CreativeWork
132 sg:pub.10.1186/1471-2105-8-85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010432928
133 https://doi.org/10.1186/1471-2105-8-85
134 rdf:type schema:CreativeWork
135 sg:pub.10.1186/s12859-016-0930-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1052522445
136 https://doi.org/10.1186/s12859-016-0930-z
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/cpe.3598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035010756
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0022-2836(81)90087-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024589839
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0022-2836(82)90398-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025042064
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1093/bioinformatics/16.8.699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025315480
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/ahs.2011.5963957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094326290
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/asap.2014.6868657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094370952
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/bibm.2015.7359735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093245214
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/mm.2016.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061409009
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1177/1094342016654215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063977417
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.4795.f schema:alternateName Complutense University of Madrid
157 schema:name Universidad Complutense de Madrid
158 rdf:type schema:Organization
159 https://www.grid.ac/institutes/grid.9499.d schema:alternateName National University of La Plata
160 schema:name Universidad Nacional de La Plata
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...