Statistical Long-Term Creep Failure Time of Unidirectional CFRP View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Yasushi Miyano , Masayuki Nakada

ABSTRACT

A method for statistical prediction of the long-term creep failure time of CFRP using the statistical static strengths of CFRP at various temperatures and the viscoelasticity of matrix resin is proposed based on Christensen’s model of viscoelastic crack kinetics. The tensile strength along the longitudinal direction of unidirectional CFRP constitutes important data for the reliable design of CFRP structures. The authors developed a reliable method for testing creep and fatigue strengths as well as static strength at elevated temperatures for resin-impregnated carbon fiber strands (CFRP strands) as unidirectional CFRP. Two kinds of CFRP strands with two types of PAN-based carbon fibers with high strength and high modulus were examined on the viewpoint of failure mechanism. The statistical static strengths of these CFRP strands and the creep compliances of matrix resins were measured at various temperatures. The tensile creep failure times of these CFRP strands are predicted statistically based on a prediction method using measured data. The predicted creep failure times of these CFRP strands were compared with the creep failure times of these CFRP strands measured experimentally and statistically. Additionally, the statistical temperature-dependent static strengths are also discussed for CFRP strands of two types of pitch-based carbon fibers with low modulus and high modulus. More... »

PAGES

75-90

Book

TITLE

Durability of Composites in a Marine Environment 2

ISBN

978-3-319-65144-6
978-3-319-65145-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-65145-3_5

DOI

http://dx.doi.org/10.1007/978-3-319-65145-3_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091843938


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kanazawa Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.444537.5", 
          "name": [
            "Kanazawa Institute of Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyano", 
        "givenName": "Yasushi", 
        "id": "sg:person.014750603631.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014750603631.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kanazawa Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.444537.5", 
          "name": [
            "Kanazawa Institute of Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakada", 
        "givenName": "Masayuki", 
        "id": "sg:person.014144672716.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014144672716.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0266-3538(90)90042-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003280876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0266-3538(90)90042-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003280876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/156855199x00236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005164300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0263-8223(89)90074-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009833665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0263-8223(89)90074-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009833665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02317988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017023639", 
          "https://doi.org/10.1007/bf02317988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02317988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017023639", 
          "https://doi.org/10.1007/bf02317988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11340-015-0049-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017460608", 
          "https://doi.org/10.1007/s11340-015-0049-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/002199802761405295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029171643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/002199802761405295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029171643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09243046.2013.777172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031846714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compscitech.2014.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044726493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09243046.2014.915099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044866096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10704-005-9062-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048304712", 
          "https://doi.org/10.1007/s10704-005-9062-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10704-005-9062-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048304712", 
          "https://doi.org/10.1007/s10704-005-9062-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0021998313515019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053784464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0021998313515019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053784464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0021998308093913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063621998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0021998308093913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063621998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/002199839703100605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063625048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/002199839703100605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063625048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0731684413493951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063839543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0731684413493951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063839543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0731684413493951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063839543"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "A method for statistical prediction of the long-term creep failure time of CFRP using the statistical static strengths of CFRP at various temperatures and the viscoelasticity of matrix resin is proposed based on Christensen\u2019s model of viscoelastic crack kinetics. The tensile strength along the longitudinal direction of unidirectional CFRP constitutes important data for the reliable design of CFRP structures. The authors developed a reliable method for testing creep and fatigue strengths as well as static strength at elevated temperatures for resin-impregnated carbon fiber strands (CFRP strands) as unidirectional CFRP. Two kinds of CFRP strands with two types of PAN-based carbon fibers with high strength and high modulus were examined on the viewpoint of failure mechanism. The statistical static strengths of these CFRP strands and the creep compliances of matrix resins were measured at various temperatures. The tensile creep failure times of these CFRP strands are predicted statistically based on a prediction method using measured data. The predicted creep failure times of these CFRP strands were compared with the creep failure times of these CFRP strands measured experimentally and statistically. Additionally, the statistical temperature-dependent static strengths are also discussed for CFRP strands of two types of pitch-based carbon fibers with low modulus and high modulus.", 
    "editor": [
      {
        "familyName": "Davies", 
        "givenName": "Peter", 
        "type": "Person"
      }, 
      {
        "familyName": "Rajapakse", 
        "givenName": "Yapa D.S.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-65145-3_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-65144-6", 
        "978-3-319-65145-3"
      ], 
      "name": "Durability of Composites in a Marine Environment 2", 
      "type": "Book"
    }, 
    "name": "Statistical Long-Term Creep Failure Time of Unidirectional CFRP", 
    "pagination": "75-90", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-65145-3_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c64ec5661e38facb2365ab5ef298101e97888851963a0db83abf92f045bec6c9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091843938"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-65145-3_5", 
      "https://app.dimensions.ai/details/publication/pub.1091843938"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000280.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-65145-3_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-65145-3_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-65145-3_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-65145-3_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-65145-3_5'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-65145-3_5 schema:about anzsrc-for:09
2 anzsrc-for:0905
3 schema:author Nb50370552a6b4a05b3fcdb5c9ef21a5a
4 schema:citation sg:pub.10.1007/bf02317988
5 sg:pub.10.1007/s10704-005-9062-6
6 sg:pub.10.1007/s11340-015-0049-6
7 https://doi.org/10.1016/0263-8223(89)90074-3
8 https://doi.org/10.1016/0266-3538(90)90042-4
9 https://doi.org/10.1016/j.compscitech.2014.10.015
10 https://doi.org/10.1080/09243046.2013.777172
11 https://doi.org/10.1080/09243046.2014.915099
12 https://doi.org/10.1163/156855199x00236
13 https://doi.org/10.1177/002199802761405295
14 https://doi.org/10.1177/0021998308093913
15 https://doi.org/10.1177/0021998313515019
16 https://doi.org/10.1177/002199839703100605
17 https://doi.org/10.1177/0731684413493951
18 schema:datePublished 2018
19 schema:datePublishedReg 2018-01-01
20 schema:description A method for statistical prediction of the long-term creep failure time of CFRP using the statistical static strengths of CFRP at various temperatures and the viscoelasticity of matrix resin is proposed based on Christensen’s model of viscoelastic crack kinetics. The tensile strength along the longitudinal direction of unidirectional CFRP constitutes important data for the reliable design of CFRP structures. The authors developed a reliable method for testing creep and fatigue strengths as well as static strength at elevated temperatures for resin-impregnated carbon fiber strands (CFRP strands) as unidirectional CFRP. Two kinds of CFRP strands with two types of PAN-based carbon fibers with high strength and high modulus were examined on the viewpoint of failure mechanism. The statistical static strengths of these CFRP strands and the creep compliances of matrix resins were measured at various temperatures. The tensile creep failure times of these CFRP strands are predicted statistically based on a prediction method using measured data. The predicted creep failure times of these CFRP strands were compared with the creep failure times of these CFRP strands measured experimentally and statistically. Additionally, the statistical temperature-dependent static strengths are also discussed for CFRP strands of two types of pitch-based carbon fibers with low modulus and high modulus.
21 schema:editor Nf6c5b97f3b2b47e291c12c5559198315
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N3f6b7553002548e48d299265e34953d9
26 schema:name Statistical Long-Term Creep Failure Time of Unidirectional CFRP
27 schema:pagination 75-90
28 schema:productId N14bc49b07c7e4dfab483c15e58bccbe6
29 N5892f4d64b6d40b68d5f6be80a854ab6
30 Nd2e6ee3546b84b8faec59408d371e11f
31 schema:publisher Nda0b17a069b346dfaeda9b6aafa70b89
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091843938
33 https://doi.org/10.1007/978-3-319-65145-3_5
34 schema:sdDatePublished 2019-04-15T10:39
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Necc36f44ee0c4959befe761b5b6274e9
37 schema:url http://link.springer.com/10.1007/978-3-319-65145-3_5
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N14bc49b07c7e4dfab483c15e58bccbe6 schema:name dimensions_id
42 schema:value pub.1091843938
43 rdf:type schema:PropertyValue
44 N338c3f60aad747919b3aa92b9ebd986a rdf:first Nbe586a4643f74bef944977bc9b9a346f
45 rdf:rest rdf:nil
46 N3f6b7553002548e48d299265e34953d9 schema:isbn 978-3-319-65144-6
47 978-3-319-65145-3
48 schema:name Durability of Composites in a Marine Environment 2
49 rdf:type schema:Book
50 N5892f4d64b6d40b68d5f6be80a854ab6 schema:name readcube_id
51 schema:value c64ec5661e38facb2365ab5ef298101e97888851963a0db83abf92f045bec6c9
52 rdf:type schema:PropertyValue
53 Nb50370552a6b4a05b3fcdb5c9ef21a5a rdf:first sg:person.014750603631.13
54 rdf:rest Nc84260c3c01143c69ad971baec392e75
55 Nbe586a4643f74bef944977bc9b9a346f schema:familyName Rajapakse
56 schema:givenName Yapa D.S.
57 rdf:type schema:Person
58 Nc51cd5b3734042518a923231a2502441 schema:familyName Davies
59 schema:givenName Peter
60 rdf:type schema:Person
61 Nc84260c3c01143c69ad971baec392e75 rdf:first sg:person.014144672716.69
62 rdf:rest rdf:nil
63 Nd2e6ee3546b84b8faec59408d371e11f schema:name doi
64 schema:value 10.1007/978-3-319-65145-3_5
65 rdf:type schema:PropertyValue
66 Nda0b17a069b346dfaeda9b6aafa70b89 schema:location Cham
67 schema:name Springer International Publishing
68 rdf:type schema:Organisation
69 Necc36f44ee0c4959befe761b5b6274e9 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Nf6c5b97f3b2b47e291c12c5559198315 rdf:first Nc51cd5b3734042518a923231a2502441
72 rdf:rest N338c3f60aad747919b3aa92b9ebd986a
73 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
74 schema:name Engineering
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
77 schema:name Civil Engineering
78 rdf:type schema:DefinedTerm
79 sg:person.014144672716.69 schema:affiliation https://www.grid.ac/institutes/grid.444537.5
80 schema:familyName Nakada
81 schema:givenName Masayuki
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014144672716.69
83 rdf:type schema:Person
84 sg:person.014750603631.13 schema:affiliation https://www.grid.ac/institutes/grid.444537.5
85 schema:familyName Miyano
86 schema:givenName Yasushi
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014750603631.13
88 rdf:type schema:Person
89 sg:pub.10.1007/bf02317988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017023639
90 https://doi.org/10.1007/bf02317988
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s10704-005-9062-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048304712
93 https://doi.org/10.1007/s10704-005-9062-6
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s11340-015-0049-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017460608
96 https://doi.org/10.1007/s11340-015-0049-6
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0263-8223(89)90074-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009833665
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/0266-3538(90)90042-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003280876
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.compscitech.2014.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044726493
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1080/09243046.2013.777172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031846714
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1080/09243046.2014.915099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044866096
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1163/156855199x00236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005164300
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1177/002199802761405295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029171643
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1177/0021998308093913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063621998
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1177/0021998313515019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053784464
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1177/002199839703100605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063625048
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1177/0731684413493951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063839543
119 rdf:type schema:CreativeWork
120 https://www.grid.ac/institutes/grid.444537.5 schema:alternateName Kanazawa Institute of Technology
121 schema:name Kanazawa Institute of Technology
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...