A Detailed Description of Direct Stereo Visual Odometry Based on Lines View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

Thomas Holzmann , Friedrich Fraundorfer , Horst Bischof

ABSTRACT

In this paper, we propose a direct stereo visual odometry method which uses vertical lines to estimate consecutive camera poses. Therefore, it is well suited for poorly textured indoor environments where point-based methods may fail. We introduce a fast line segment detector and matcher detecting vertical lines, which occur frequently in man-made environments. We estimate the pose of the camera by directly minimizing the photometric error of the patches around the detected lines. In cases where not sufficient lines could be detected, point features are used as fallback solution. As our algorithm runs in real-time, it is well suited for robotics and augmented reality applications. In our experiments, we show that our algorithm outperforms state-of-the-art methods on poorly textured indoor scenes and delivers comparable results on well textured outdoor scenes. More... »

PAGES

353-373

References to SciGraph publications

Book

TITLE

Computer Vision, Imaging and Computer Graphics Theory and Applications

ISBN

978-3-319-64869-9
978-3-319-64870-5

Author Affiliations

From Grant

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-64870-5_17

DOI

http://dx.doi.org/10.1007/978-3-319-64870-5_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091100834


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Graz University of Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holzmann", 
        "givenName": "Thomas", 
        "id": "sg:person.013150156413.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013150156413.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Graz University of Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fraundorfer", 
        "givenName": "Friedrich", 
        "id": "sg:person.016452351373.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016452351373.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Graz University of Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bischof", 
        "givenName": "Horst", 
        "id": "sg:person.013002347027.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013002347027.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-319-10605-2_54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003628531", 
          "https://doi.org/10.1007/978-3-319-10605-2_54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rob.21466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004519616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1004862095", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21779-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004862095", 
          "https://doi.org/10.1007/978-0-387-21779-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21779-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004862095", 
          "https://doi.org/10.1007/978-0-387-21779-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-010-0361-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027045040", 
          "https://doi.org/10.1007/s11263-010-0361-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10514-009-9156-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042192399", 
          "https://doi.org/10.1007/s10514-009-9156-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10514-009-9156-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042192399", 
          "https://doi.org/10.1007/s10514-009-9156-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10514-009-9156-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042192399", 
          "https://doi.org/10.1007/s10514-009-9156-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/qam/10666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059346793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2008.300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0111030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062837892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ivs.2011.5940405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093700772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2011.6126513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093796829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2012.6385773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094215164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2013.6696514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094264897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ismar.2007.4538852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094578863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2011.5995512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094739942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2005.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095148028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2012.6248074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095200328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2015.7353631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095421936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3dv.2014.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095641482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icra.2014.6906584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095746740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5220/0005715604740485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099547177"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "In this paper, we propose a direct stereo visual odometry method which uses vertical lines to estimate consecutive camera poses. Therefore, it is well suited for poorly textured indoor environments where point-based methods may fail. We introduce a fast line segment detector and matcher detecting vertical lines, which occur frequently in man-made environments. We estimate the pose of the camera by directly minimizing the photometric error of the patches around the detected lines. In cases where not sufficient lines could be detected, point features are used as fallback solution. As our algorithm runs in real-time, it is well suited for robotics and augmented reality applications. In our experiments, we show that our algorithm outperforms state-of-the-art methods on poorly textured indoor scenes and delivers comparable results on well textured outdoor scenes.", 
    "editor": [
      {
        "familyName": "Braz", 
        "givenName": "Jos\u00e9", 
        "type": "Person"
      }, 
      {
        "familyName": "Magnenat-Thalmann", 
        "givenName": "Nadia", 
        "type": "Person"
      }, 
      {
        "familyName": "Richard", 
        "givenName": "Paul", 
        "type": "Person"
      }, 
      {
        "familyName": "Linsen", 
        "givenName": "Lars", 
        "type": "Person"
      }, 
      {
        "familyName": "Telea", 
        "givenName": "Alexandru", 
        "type": "Person"
      }, 
      {
        "familyName": "Battiato", 
        "givenName": "Sebastiano", 
        "type": "Person"
      }, 
      {
        "familyName": "Imai", 
        "givenName": "Francisco", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-64870-5_17", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6207978", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-64869-9", 
        "978-3-319-64870-5"
      ], 
      "name": "Computer Vision, Imaging and Computer Graphics Theory and Applications", 
      "type": "Book"
    }, 
    "name": "A Detailed Description of Direct Stereo Visual Odometry Based on Lines", 
    "pagination": "353-373", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-64870-5_17"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1fb650e007954e57f8b0ac7375cf99d79fe54430c12bb7c3caafccd7ecb9f5b1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091100834"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-64870-5_17", 
      "https://app.dimensions.ai/details/publication/pub.1091100834"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000280.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-64870-5_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-64870-5_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-64870-5_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-64870-5_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-64870-5_17'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      23 PREDICATES      48 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-64870-5_17 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc27b1ac7c7504465bcc9024834590817
4 schema:citation sg:pub.10.1007/978-0-387-21779-6
5 sg:pub.10.1007/978-3-319-10605-2_54
6 sg:pub.10.1007/s10514-009-9156-5
7 sg:pub.10.1007/s11263-010-0361-7
8 https://app.dimensions.ai/details/publication/pub.1004862095
9 https://doi.org/10.1002/rob.21466
10 https://doi.org/10.1090/qam/10666
11 https://doi.org/10.1109/3dv.2014.14
12 https://doi.org/10.1109/cvpr.2011.5995512
13 https://doi.org/10.1109/cvpr.2012.6248074
14 https://doi.org/10.1109/iccv.2005.104
15 https://doi.org/10.1109/iccv.2011.6126513
16 https://doi.org/10.1109/icra.2014.6906584
17 https://doi.org/10.1109/iros.2012.6385773
18 https://doi.org/10.1109/iros.2013.6696514
19 https://doi.org/10.1109/iros.2015.7353631
20 https://doi.org/10.1109/ismar.2007.4538852
21 https://doi.org/10.1109/ivs.2011.5940405
22 https://doi.org/10.1109/tpami.2008.300
23 https://doi.org/10.1137/0111030
24 https://doi.org/10.5220/0005715604740485
25 schema:datePublished 2017
26 schema:datePublishedReg 2017-01-01
27 schema:description In this paper, we propose a direct stereo visual odometry method which uses vertical lines to estimate consecutive camera poses. Therefore, it is well suited for poorly textured indoor environments where point-based methods may fail. We introduce a fast line segment detector and matcher detecting vertical lines, which occur frequently in man-made environments. We estimate the pose of the camera by directly minimizing the photometric error of the patches around the detected lines. In cases where not sufficient lines could be detected, point features are used as fallback solution. As our algorithm runs in real-time, it is well suited for robotics and augmented reality applications. In our experiments, we show that our algorithm outperforms state-of-the-art methods on poorly textured indoor scenes and delivers comparable results on well textured outdoor scenes.
28 schema:editor N13dde51bbf03433596363415cdc6efcf
29 schema:genre chapter
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N3e350e87df42464f885ca17ee18528bc
33 schema:name A Detailed Description of Direct Stereo Visual Odometry Based on Lines
34 schema:pagination 353-373
35 schema:productId N4554a319379e4e118bb6b8d9f5322ab9
36 N8eb8e0009c9a4d0bb1991d3e478252f3
37 Ne4b02313616f451ab2f82e12202bd0c4
38 schema:publisher Ne4345192902646bd90774faafbb99936
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091100834
40 https://doi.org/10.1007/978-3-319-64870-5_17
41 schema:sdDatePublished 2019-04-15T12:36
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N5bdf91a351824123bfd99ec2759b64f3
44 schema:url http://link.springer.com/10.1007/978-3-319-64870-5_17
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N0903446864774631aac8e54df12d1e2e rdf:first N555fa4cf96ca4d039d82004d7db4b7a0
49 rdf:rest Nf9301e9538da4bc4a248388ca221f2e5
50 N13dde51bbf03433596363415cdc6efcf rdf:first Na80e4a2b717f46acbea241041f4eb953
51 rdf:rest N0903446864774631aac8e54df12d1e2e
52 N173ebb56b4164d689150b173f75e7314 rdf:first N8aa93c4130264826b5db56e6e65ad1e8
53 rdf:rest Ned7c3ba2de1d49c49c6f0339735e3fcd
54 N3e350e87df42464f885ca17ee18528bc schema:isbn 978-3-319-64869-9
55 978-3-319-64870-5
56 schema:name Computer Vision, Imaging and Computer Graphics Theory and Applications
57 rdf:type schema:Book
58 N4554a319379e4e118bb6b8d9f5322ab9 schema:name doi
59 schema:value 10.1007/978-3-319-64870-5_17
60 rdf:type schema:PropertyValue
61 N555fa4cf96ca4d039d82004d7db4b7a0 schema:familyName Magnenat-Thalmann
62 schema:givenName Nadia
63 rdf:type schema:Person
64 N5ac9cbd3c22c44a8a479df1c03969d5b schema:familyName Battiato
65 schema:givenName Sebastiano
66 rdf:type schema:Person
67 N5bdf91a351824123bfd99ec2759b64f3 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N70ea20a1c06441c5825d8616dc5307cb schema:familyName Richard
70 schema:givenName Paul
71 rdf:type schema:Person
72 N841dd3d4b1704590acce8b219e032daa schema:familyName Telea
73 schema:givenName Alexandru
74 rdf:type schema:Person
75 N8aa93c4130264826b5db56e6e65ad1e8 schema:familyName Linsen
76 schema:givenName Lars
77 rdf:type schema:Person
78 N8eb8e0009c9a4d0bb1991d3e478252f3 schema:name readcube_id
79 schema:value 1fb650e007954e57f8b0ac7375cf99d79fe54430c12bb7c3caafccd7ecb9f5b1
80 rdf:type schema:PropertyValue
81 N91ebee5bdb644a18b8f18dc62e79051a rdf:first N5ac9cbd3c22c44a8a479df1c03969d5b
82 rdf:rest Nabbde467f74f4a96bbecbac4f4f9a9b6
83 Na80e4a2b717f46acbea241041f4eb953 schema:familyName Braz
84 schema:givenName José
85 rdf:type schema:Person
86 Nabbde467f74f4a96bbecbac4f4f9a9b6 rdf:first Nd0292f104af845d9b761f1ae692476cd
87 rdf:rest rdf:nil
88 Nc27b1ac7c7504465bcc9024834590817 rdf:first sg:person.013150156413.01
89 rdf:rest Nddb6655bcf6d44dda40a2ad46a5fc5a8
90 Nd0292f104af845d9b761f1ae692476cd schema:familyName Imai
91 schema:givenName Francisco
92 rdf:type schema:Person
93 Nddb6655bcf6d44dda40a2ad46a5fc5a8 rdf:first sg:person.016452351373.65
94 rdf:rest Nea5058172c784651a373022ca4d1e185
95 Ne4345192902646bd90774faafbb99936 schema:location Cham
96 schema:name Springer International Publishing
97 rdf:type schema:Organisation
98 Ne4b02313616f451ab2f82e12202bd0c4 schema:name dimensions_id
99 schema:value pub.1091100834
100 rdf:type schema:PropertyValue
101 Nea5058172c784651a373022ca4d1e185 rdf:first sg:person.013002347027.27
102 rdf:rest rdf:nil
103 Ned7c3ba2de1d49c49c6f0339735e3fcd rdf:first N841dd3d4b1704590acce8b219e032daa
104 rdf:rest N91ebee5bdb644a18b8f18dc62e79051a
105 Nf9301e9538da4bc4a248388ca221f2e5 rdf:first N70ea20a1c06441c5825d8616dc5307cb
106 rdf:rest N173ebb56b4164d689150b173f75e7314
107 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
108 schema:name Information and Computing Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
111 schema:name Artificial Intelligence and Image Processing
112 rdf:type schema:DefinedTerm
113 sg:grant.6207978 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-64870-5_17
114 rdf:type schema:MonetaryGrant
115 sg:person.013002347027.27 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
116 schema:familyName Bischof
117 schema:givenName Horst
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013002347027.27
119 rdf:type schema:Person
120 sg:person.013150156413.01 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
121 schema:familyName Holzmann
122 schema:givenName Thomas
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013150156413.01
124 rdf:type schema:Person
125 sg:person.016452351373.65 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
126 schema:familyName Fraundorfer
127 schema:givenName Friedrich
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016452351373.65
129 rdf:type schema:Person
130 sg:pub.10.1007/978-0-387-21779-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004862095
131 https://doi.org/10.1007/978-0-387-21779-6
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/978-3-319-10605-2_54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003628531
134 https://doi.org/10.1007/978-3-319-10605-2_54
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s10514-009-9156-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042192399
137 https://doi.org/10.1007/s10514-009-9156-5
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s11263-010-0361-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027045040
140 https://doi.org/10.1007/s11263-010-0361-7
141 rdf:type schema:CreativeWork
142 https://app.dimensions.ai/details/publication/pub.1004862095 schema:CreativeWork
143 https://doi.org/10.1002/rob.21466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004519616
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1090/qam/10666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059346793
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/3dv.2014.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095641482
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/cvpr.2011.5995512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094739942
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/cvpr.2012.6248074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095200328
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/iccv.2005.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095148028
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/iccv.2011.6126513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093796829
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/icra.2014.6906584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095746740
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/iros.2012.6385773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094215164
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/iros.2013.6696514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094264897
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/iros.2015.7353631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095421936
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/ismar.2007.4538852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094578863
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/ivs.2011.5940405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093700772
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/tpami.2008.300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743636
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1137/0111030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062837892
172 rdf:type schema:CreativeWork
173 https://doi.org/10.5220/0005715604740485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099547177
174 rdf:type schema:CreativeWork
175 https://www.grid.ac/institutes/grid.410413.3 schema:alternateName Graz University of Technology
176 schema:name Graz University of Technology
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...