Automated Essay Scoring System Based on Rubric View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Megumi Yamamoto , Nobuo Umemura , Hiroyuki Kawano

ABSTRACT

In this paper, we propose an architecture of automated essay scoring system based on rubric, which combines automated scoring with human scoring. Rubrics are valid criteria for grading students’ essays. Our proposed rubric has five evaluation viewpoints “Contents, Structure, Evidence, Style, and Skill” and 25 evaluation items which are subdivided viewpoints. The system is cloud-based application and consists of several tools such as Moodle, R, MeCab, and RedPen. At first, the system automatically scores 11 items included in the Style and Skill such as sentence style, syntax, usage, readability, lexical richness, and so on. Then it predicts scores of Style and Skill from these items’ scores by multiple regression model. It also predicts Contents’ score by the cosine similarity between topics and descriptions. Moreover, our system classifies into five grades “A+, A, B, C, D” as useful information for teachers, by using machine learning techniques such as support vector machine. We try to improve automated scoring algorithms and a variety of input essays in order to improve accuracy of classification over 90%. More... »

PAGES

177-190

Book

TITLE

Applied Computing & Information Technology

ISBN

978-3-319-64050-1
978-3-319-64051-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-64051-8_11

DOI

http://dx.doi.org/10.1007/978-3-319-64051-8_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090680764


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nagoya University of Foreign Studies", 
          "id": "https://www.grid.ac/institutes/grid.444511.1", 
          "name": [
            "Nagoya University of Foreign Studies"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamamoto", 
        "givenName": "Megumi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University of Arts and Sciences", 
          "id": "https://www.grid.ac/institutes/grid.444512.2", 
          "name": [
            "Nagoya University of Arts and Sciences"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Umemura", 
        "givenName": "Nobuo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanzan University", 
          "id": "https://www.grid.ac/institutes/grid.444385.a", 
          "name": [
            "Nanzan University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawano", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.013163377255.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013163377255.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/j.2333-8504.2004.tb01972.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019200804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4312/ala.2.2.97-115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072464971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1220175.1220205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099221958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1220175.1220205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099221958"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "In this paper, we propose an architecture of automated essay scoring system based on rubric, which combines automated scoring with human scoring. Rubrics are valid criteria for grading students\u2019 essays. Our proposed rubric has five evaluation viewpoints \u201cContents, Structure, Evidence, Style, and Skill\u201d and 25 evaluation items which are subdivided viewpoints. The system is cloud-based application and consists of several tools such as Moodle, R, MeCab, and RedPen. At first, the system automatically scores 11 items included in the Style and Skill such as sentence style, syntax, usage, readability, lexical richness, and so on. Then it predicts scores of Style and Skill from these items\u2019 scores by multiple regression model. It also predicts Contents\u2019 score by the cosine similarity between topics and descriptions. Moreover, our system classifies into five grades \u201cA+, A, B, C, D\u201d as useful information for teachers, by using machine learning techniques such as support vector machine. We try to improve automated scoring algorithms and a variety of input essays in order to improve accuracy of classification over 90%.", 
    "editor": [
      {
        "familyName": "Lee", 
        "givenName": "Roger", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-64051-8_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-64050-1", 
        "978-3-319-64051-8"
      ], 
      "name": "Applied Computing & Information Technology", 
      "type": "Book"
    }, 
    "name": "Automated Essay Scoring System Based on Rubric", 
    "pagination": "177-190", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-64051-8_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ae937d0d890163d4ac5288a8502be8689285c3068e0a82a85e7a25acfdee84ac"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090680764"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-64051-8_11", 
      "https://app.dimensions.ai/details/publication/pub.1090680764"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000279.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-64051-8_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-64051-8_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-64051-8_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-64051-8_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-64051-8_11'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      23 PREDICATES      30 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-64051-8_11 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N8776ee518d5b4a678d5d9f4ff7cac67c
4 schema:citation https://doi.org/10.1002/j.2333-8504.2004.tb01972.x
5 https://doi.org/10.3115/1220175.1220205
6 https://doi.org/10.4312/ala.2.2.97-115
7 schema:datePublished 2018
8 schema:datePublishedReg 2018-01-01
9 schema:description In this paper, we propose an architecture of automated essay scoring system based on rubric, which combines automated scoring with human scoring. Rubrics are valid criteria for grading students’ essays. Our proposed rubric has five evaluation viewpoints “Contents, Structure, Evidence, Style, and Skill” and 25 evaluation items which are subdivided viewpoints. The system is cloud-based application and consists of several tools such as Moodle, R, MeCab, and RedPen. At first, the system automatically scores 11 items included in the Style and Skill such as sentence style, syntax, usage, readability, lexical richness, and so on. Then it predicts scores of Style and Skill from these items’ scores by multiple regression model. It also predicts Contents’ score by the cosine similarity between topics and descriptions. Moreover, our system classifies into five grades “A+, A, B, C, D” as useful information for teachers, by using machine learning techniques such as support vector machine. We try to improve automated scoring algorithms and a variety of input essays in order to improve accuracy of classification over 90%.
10 schema:editor N4819e5cf00f5494b896f17dc2754913d
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N305b2b6d5b134ada9b613acb8107770d
15 schema:name Automated Essay Scoring System Based on Rubric
16 schema:pagination 177-190
17 schema:productId N0cfdea86dbf848ad86f8e222e58d7e64
18 N8596b45be52e48a5a228ecd311017270
19 Nd58f187788c5416c88b1fcc4051097f1
20 schema:publisher Nb6af7915f6554b4d9377f04a081267fe
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090680764
22 https://doi.org/10.1007/978-3-319-64051-8_11
23 schema:sdDatePublished 2019-04-16T00:52
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N9419e964f79749e1a0485dd933e69d06
26 schema:url http://link.springer.com/10.1007/978-3-319-64051-8_11
27 sgo:license sg:explorer/license/
28 sgo:sdDataset chapters
29 rdf:type schema:Chapter
30 N0cfdea86dbf848ad86f8e222e58d7e64 schema:name dimensions_id
31 schema:value pub.1090680764
32 rdf:type schema:PropertyValue
33 N11ce4db2d80843728ec3191f0a00b411 rdf:first Na49360b4a51542e69bdf41789476b80a
34 rdf:rest Ndbc4a793011046cdafc20c6b1a80953f
35 N246143fe9bf249a688bccaf04a2ccd57 schema:familyName Lee
36 schema:givenName Roger
37 rdf:type schema:Person
38 N305b2b6d5b134ada9b613acb8107770d schema:isbn 978-3-319-64050-1
39 978-3-319-64051-8
40 schema:name Applied Computing & Information Technology
41 rdf:type schema:Book
42 N4819e5cf00f5494b896f17dc2754913d rdf:first N246143fe9bf249a688bccaf04a2ccd57
43 rdf:rest rdf:nil
44 N8596b45be52e48a5a228ecd311017270 schema:name readcube_id
45 schema:value ae937d0d890163d4ac5288a8502be8689285c3068e0a82a85e7a25acfdee84ac
46 rdf:type schema:PropertyValue
47 N8776ee518d5b4a678d5d9f4ff7cac67c rdf:first Nd0c7c11e08714b74a9219dc558319c13
48 rdf:rest N11ce4db2d80843728ec3191f0a00b411
49 N9419e964f79749e1a0485dd933e69d06 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Na49360b4a51542e69bdf41789476b80a schema:affiliation https://www.grid.ac/institutes/grid.444512.2
52 schema:familyName Umemura
53 schema:givenName Nobuo
54 rdf:type schema:Person
55 Nb6af7915f6554b4d9377f04a081267fe schema:location Cham
56 schema:name Springer International Publishing
57 rdf:type schema:Organisation
58 Nd0c7c11e08714b74a9219dc558319c13 schema:affiliation https://www.grid.ac/institutes/grid.444511.1
59 schema:familyName Yamamoto
60 schema:givenName Megumi
61 rdf:type schema:Person
62 Nd58f187788c5416c88b1fcc4051097f1 schema:name doi
63 schema:value 10.1007/978-3-319-64051-8_11
64 rdf:type schema:PropertyValue
65 Ndbc4a793011046cdafc20c6b1a80953f rdf:first sg:person.013163377255.11
66 rdf:rest rdf:nil
67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
68 schema:name Information and Computing Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
71 schema:name Artificial Intelligence and Image Processing
72 rdf:type schema:DefinedTerm
73 sg:person.013163377255.11 schema:affiliation https://www.grid.ac/institutes/grid.444385.a
74 schema:familyName Kawano
75 schema:givenName Hiroyuki
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013163377255.11
77 rdf:type schema:Person
78 https://doi.org/10.1002/j.2333-8504.2004.tb01972.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019200804
79 rdf:type schema:CreativeWork
80 https://doi.org/10.3115/1220175.1220205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099221958
81 rdf:type schema:CreativeWork
82 https://doi.org/10.4312/ala.2.2.97-115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072464971
83 rdf:type schema:CreativeWork
84 https://www.grid.ac/institutes/grid.444385.a schema:alternateName Nanzan University
85 schema:name Nanzan University
86 rdf:type schema:Organization
87 https://www.grid.ac/institutes/grid.444511.1 schema:alternateName Nagoya University of Foreign Studies
88 schema:name Nagoya University of Foreign Studies
89 rdf:type schema:Organization
90 https://www.grid.ac/institutes/grid.444512.2 schema:alternateName Nagoya University of Arts and Sciences
91 schema:name Nagoya University of Arts and Sciences
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...