Cube Attacks on Non-Blackbox Polynomials Based on Division Property View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-08-02

AUTHORS

Yosuke Todo , Takanori Isobe , Yonglin Hao , Willi Meier

ABSTRACT

The cube attack is a powerful cryptanalytic technique and is especially powerful against stream ciphers. Since we need to analyze the complicated structure of a stream cipher in the cube attack, the cube attack basically analyzes it by regarding it as a blackbox. Therefore, the cube attack is an experimental attack, and we cannot evaluate the security when the size of cube exceeds an experimental range, e.g., 40. In this paper, we propose cube attacks on non-blackbox polynomials. Our attacks are developed by using the division property, which is recently applied to various block ciphers. The clear advantage is that we can exploit large cube sizes because it never regards the cipher as a blackbox. We apply the new cube attack to Trivium, Grain128a, and ACORN. As a result, the secret keys of 832-round Trivium, 183-round Grain128a, and 704-round ACORN are recovered. These attacks are the current best key-recovery attack against these ciphers. More... »

PAGES

250-279

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-63697-9_9

DOI

http://dx.doi.org/10.1007/978-3-319-63697-9_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091024677


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "NTT Secure Platform Laboratories, 180-8585, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "NTT Secure Platform Laboratories, 180-8585, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Todo", 
        "givenName": "Yosuke", 
        "id": "sg:person.013247762751.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013247762751.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hyogo, 650-0047, Hyogo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266453.0", 
          "name": [
            "University of Hyogo, 650-0047, Hyogo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Isobe", 
        "givenName": "Takanori", 
        "id": "sg:person.07676572757.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07676572757.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Technology, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Computer Science and Technology, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hao", 
        "givenName": "Yonglin", 
        "id": "sg:person.014270173173.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270173173.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "FHNW, Windisch, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.410380.e", 
          "name": [
            "FHNW, Windisch, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meier", 
        "givenName": "Willi", 
        "id": "sg:person.07653531142.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07653531142.18"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-08-02", 
    "datePublishedReg": "2017-08-02", 
    "description": "The cube attack is a powerful cryptanalytic technique and is especially powerful against stream ciphers. Since we need to analyze the complicated structure of a stream cipher in the cube attack, the cube attack basically analyzes it by regarding it as a blackbox. Therefore, the cube attack is an experimental attack, and we cannot evaluate the security when the size of cube exceeds an experimental range, e.g., 40. In this paper, we propose cube attacks on non-blackbox polynomials. Our attacks are developed by using the division property, which is recently applied to various block ciphers. The clear advantage is that we can exploit large cube sizes because it never regards the cipher as a blackbox. We apply the new cube attack to Trivium, Grain128a, and ACORN. As a result, the secret keys of 832-round Trivium, 183-round Grain128a, and 704-round ACORN are recovered. These attacks are the current best key-recovery attack against these ciphers.", 
    "editor": [
      {
        "familyName": "Katz", 
        "givenName": "Jonathan", 
        "type": "Person"
      }, 
      {
        "familyName": "Shacham", 
        "givenName": "Hovav", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-63697-9_9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-63696-2", 
        "978-3-319-63697-9"
      ], 
      "name": "Advances in Cryptology \u2013 CRYPTO 2017", 
      "type": "Book"
    }, 
    "keywords": [
      "clear advantage", 
      "attacks", 
      "size", 
      "results", 
      "technique", 
      "range", 
      "advantages", 
      "experimental attack", 
      "properties", 
      "cube attack", 
      "cube size", 
      "key", 
      "acorns", 
      "structure", 
      "Trivium", 
      "division property", 
      "cube", 
      "paper", 
      "complicated structure", 
      "key-recovery attack", 
      "blackbox", 
      "experimental range", 
      "cryptanalytic techniques", 
      "security", 
      "polynomials", 
      "block cipher", 
      "cipher", 
      "stream cipher", 
      "size of cube", 
      "secret key", 
      "powerful cryptanalytic technique", 
      "non-blackbox polynomials", 
      "large cube sizes", 
      "new cube attack", 
      "Grain128a", 
      "current best key-recovery attack", 
      "best key-recovery attack"
    ], 
    "name": "Cube Attacks on Non-Blackbox Polynomials Based on Division Property", 
    "pagination": "250-279", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091024677"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-63697-9_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-63697-9_9", 
      "https://app.dimensions.ai/details/publication/pub.1091024677"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_369.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-63697-9_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-63697-9_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-63697-9_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-63697-9_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-63697-9_9'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      23 PREDICATES      62 URIs      55 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-63697-9_9 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author Ne3fa8ba744874f37b118efddef1a0014
4 schema:datePublished 2017-08-02
5 schema:datePublishedReg 2017-08-02
6 schema:description The cube attack is a powerful cryptanalytic technique and is especially powerful against stream ciphers. Since we need to analyze the complicated structure of a stream cipher in the cube attack, the cube attack basically analyzes it by regarding it as a blackbox. Therefore, the cube attack is an experimental attack, and we cannot evaluate the security when the size of cube exceeds an experimental range, e.g., 40. In this paper, we propose cube attacks on non-blackbox polynomials. Our attacks are developed by using the division property, which is recently applied to various block ciphers. The clear advantage is that we can exploit large cube sizes because it never regards the cipher as a blackbox. We apply the new cube attack to Trivium, Grain128a, and ACORN. As a result, the secret keys of 832-round Trivium, 183-round Grain128a, and 704-round ACORN are recovered. These attacks are the current best key-recovery attack against these ciphers.
7 schema:editor N92151ef0e2a64950be6d70c7ed9f94ec
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N89e134304b964916953efbc303a87dba
12 schema:keywords Grain128a
13 Trivium
14 acorns
15 advantages
16 attacks
17 best key-recovery attack
18 blackbox
19 block cipher
20 cipher
21 clear advantage
22 complicated structure
23 cryptanalytic techniques
24 cube
25 cube attack
26 cube size
27 current best key-recovery attack
28 division property
29 experimental attack
30 experimental range
31 key
32 key-recovery attack
33 large cube sizes
34 new cube attack
35 non-blackbox polynomials
36 paper
37 polynomials
38 powerful cryptanalytic technique
39 properties
40 range
41 results
42 secret key
43 security
44 size
45 size of cube
46 stream cipher
47 structure
48 technique
49 schema:name Cube Attacks on Non-Blackbox Polynomials Based on Division Property
50 schema:pagination 250-279
51 schema:productId N4ebe2392ef36472abbf210fed1ae3f74
52 Nbaf7566f9e3245f9ae44d931cd42359f
53 schema:publisher N876ddadd30bb4889b3d63fd6b73e3994
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091024677
55 https://doi.org/10.1007/978-3-319-63697-9_9
56 schema:sdDatePublished 2022-01-01T19:21
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N933e24e4ef804d4188f01d154ab136f4
59 schema:url https://doi.org/10.1007/978-3-319-63697-9_9
60 sgo:license sg:explorer/license/
61 sgo:sdDataset chapters
62 rdf:type schema:Chapter
63 N01761ed7e6044a19a6d7395229c1083d rdf:first sg:person.07653531142.18
64 rdf:rest rdf:nil
65 N019447ac81b5491a803c52a6434b5ac4 rdf:first Nd899152b6d584d6a95a71a34ed4a7e05
66 rdf:rest rdf:nil
67 N39da3f2c03354be19e4a9513831b5c7e rdf:first sg:person.014270173173.47
68 rdf:rest N01761ed7e6044a19a6d7395229c1083d
69 N4ebe2392ef36472abbf210fed1ae3f74 schema:name doi
70 schema:value 10.1007/978-3-319-63697-9_9
71 rdf:type schema:PropertyValue
72 N570b0856f87146ce89929bd130beb642 rdf:first sg:person.07676572757.38
73 rdf:rest N39da3f2c03354be19e4a9513831b5c7e
74 N876ddadd30bb4889b3d63fd6b73e3994 schema:name Springer Nature
75 rdf:type schema:Organisation
76 N89e134304b964916953efbc303a87dba schema:isbn 978-3-319-63696-2
77 978-3-319-63697-9
78 schema:name Advances in Cryptology – CRYPTO 2017
79 rdf:type schema:Book
80 N92151ef0e2a64950be6d70c7ed9f94ec rdf:first Nfc81dc54dd164e8599de16fa0c0dff4b
81 rdf:rest N019447ac81b5491a803c52a6434b5ac4
82 N933e24e4ef804d4188f01d154ab136f4 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Nbaf7566f9e3245f9ae44d931cd42359f schema:name dimensions_id
85 schema:value pub.1091024677
86 rdf:type schema:PropertyValue
87 Nd899152b6d584d6a95a71a34ed4a7e05 schema:familyName Shacham
88 schema:givenName Hovav
89 rdf:type schema:Person
90 Ne3fa8ba744874f37b118efddef1a0014 rdf:first sg:person.013247762751.78
91 rdf:rest N570b0856f87146ce89929bd130beb642
92 Nfc81dc54dd164e8599de16fa0c0dff4b schema:familyName Katz
93 schema:givenName Jonathan
94 rdf:type schema:Person
95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
96 schema:name Information and Computing Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
99 schema:name Data Format
100 rdf:type schema:DefinedTerm
101 sg:person.013247762751.78 schema:affiliation grid-institutes:None
102 schema:familyName Todo
103 schema:givenName Yosuke
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013247762751.78
105 rdf:type schema:Person
106 sg:person.014270173173.47 schema:affiliation grid-institutes:grid.12527.33
107 schema:familyName Hao
108 schema:givenName Yonglin
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270173173.47
110 rdf:type schema:Person
111 sg:person.07653531142.18 schema:affiliation grid-institutes:grid.410380.e
112 schema:familyName Meier
113 schema:givenName Willi
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07653531142.18
115 rdf:type schema:Person
116 sg:person.07676572757.38 schema:affiliation grid-institutes:grid.266453.0
117 schema:familyName Isobe
118 schema:givenName Takanori
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07676572757.38
120 rdf:type schema:Person
121 grid-institutes:None schema:alternateName NTT Secure Platform Laboratories, 180-8585, Tokyo, Japan
122 schema:name NTT Secure Platform Laboratories, 180-8585, Tokyo, Japan
123 rdf:type schema:Organization
124 grid-institutes:grid.12527.33 schema:alternateName Department of Computer Science and Technology, Tsinghua University, 100084, Beijing, China
125 schema:name Department of Computer Science and Technology, Tsinghua University, 100084, Beijing, China
126 rdf:type schema:Organization
127 grid-institutes:grid.266453.0 schema:alternateName University of Hyogo, 650-0047, Hyogo, Japan
128 schema:name University of Hyogo, 650-0047, Hyogo, Japan
129 rdf:type schema:Organization
130 grid-institutes:grid.410380.e schema:alternateName FHNW, Windisch, Switzerland
131 schema:name FHNW, Windisch, Switzerland
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...