Encrypted Davies-Meyer and Its Dual: Towards Optimal Security Using Mirror Theory View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017-08-02

AUTHORS

Bart Mennink , Samuel Neves

ABSTRACT

At CRYPTO 2016, Cogliati and Seurin introduced the Encrypted Davies-Meyer construction, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_2(p_1(x) \oplus x)$$\end{document} for two n-bit permutations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2$$\end{document}, and proved security up to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{2n/3}$$\end{document}. We present an improved security analysis up to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^n/(67n)$$\end{document}. Additionally, we introduce the dual of the Encrypted Davies-Meyer construction, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_2(p_1(x)) \oplus p_1(x)$$\end{document}, and prove even tighter security for this construction: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^n/67$$\end{document}. We finally demonstrate that the analysis neatly generalizes to prove almost optimal security of the Encrypted Wegman-Carter with Davies-Meyer MAC construction. Central to our analysis is a modernization of Patarin’s mirror theorem and an exposition of how it relates to fundamental cryptographic problems. More... »

PAGES

556-583

Book

TITLE

Advances in Cryptology – CRYPTO 2017

ISBN

978-3-319-63696-2
978-3-319-63697-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-63697-9_19

DOI

http://dx.doi.org/10.1007/978-3-319-63697-9_19

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091024665


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "CWI, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.6054.7", 
          "name": [
            "Digital Security Group, Radboud University, Nijmegen, The Netherlands", 
            "CWI, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mennink", 
        "givenName": "Bart", 
        "id": "sg:person.012130641461.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130641461.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CISUC, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.8051.c", 
          "name": [
            "CISUC, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neves", 
        "givenName": "Samuel", 
        "id": "sg:person.011136377232.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011136377232.42"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-08-02", 
    "datePublishedReg": "2017-08-02", 
    "description": "At CRYPTO 2016, Cogliati and Seurin introduced the Encrypted Davies-Meyer construction, \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$p_2(p_1(x) \\oplus x)$$\\end{document} for two n-bit permutations \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$p_1,p_2$$\\end{document}, and proved security up\u00a0to \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2^{2n/3}$$\\end{document}. We present an improved security analysis up\u00a0to \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2^n/(67n)$$\\end{document}. Additionally, we introduce the dual of the Encrypted Davies-Meyer construction, \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$p_2(p_1(x)) \\oplus p_1(x)$$\\end{document}, and prove even tighter security for this construction: \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2^n/67$$\\end{document}. We finally demonstrate that the analysis neatly generalizes to prove almost optimal security of the Encrypted Wegman-Carter with Davies-Meyer MAC construction. Central to our analysis is a modernization of Patarin\u2019s mirror theorem and an exposition of how it relates to fundamental cryptographic problems.", 
    "editor": [
      {
        "familyName": "Katz", 
        "givenName": "Jonathan", 
        "type": "Person"
      }, 
      {
        "familyName": "Shacham", 
        "givenName": "Hovav", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-63697-9_19", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-63696-2", 
        "978-3-319-63697-9"
      ], 
      "name": "Advances in Cryptology \u2013 CRYPTO 2017", 
      "type": "Book"
    }, 
    "keywords": [
      "security", 
      "modernization", 
      "construction", 
      "tight security", 
      "optimal security", 
      "analysis", 
      "exposition", 
      "problem", 
      "theory", 
      "security analysis", 
      "mirror theory", 
      "Cogliati", 
      "Seurin", 
      "n-bit permutations", 
      "permutations", 
      "dual", 
      "MAC constructions", 
      "mirror theorem", 
      "theorem", 
      "Davies-Meyer", 
      "CRYPTO 2016", 
      "Davies-Meyer construction", 
      "Improved Security Analysis", 
      "Wegman-Carter", 
      "cryptographic problems"
    ], 
    "name": "Encrypted Davies-Meyer and Its Dual: Towards Optimal Security Using Mirror Theory", 
    "pagination": "556-583", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091024665"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-63697-9_19"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-63697-9_19", 
      "https://app.dimensions.ai/details/publication/pub.1091024665"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_196.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-63697-9_19"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-63697-9_19'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-63697-9_19'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-63697-9_19'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-63697-9_19'


 

This table displays all metadata directly associated to this object as RDF triples.

100 TRIPLES      22 PREDICATES      49 URIs      42 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-63697-9_19 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author N875b06c136f547979a6772bed9f38790
4 schema:datePublished 2017-08-02
5 schema:datePublishedReg 2017-08-02
6 schema:description At CRYPTO 2016, Cogliati and Seurin introduced the Encrypted Davies-Meyer construction, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_2(p_1(x) \oplus x)$$\end{document} for two n-bit permutations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2$$\end{document}, and proved security up to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{2n/3}$$\end{document}. We present an improved security analysis up to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^n/(67n)$$\end{document}. Additionally, we introduce the dual of the Encrypted Davies-Meyer construction, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_2(p_1(x)) \oplus p_1(x)$$\end{document}, and prove even tighter security for this construction: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^n/67$$\end{document}. We finally demonstrate that the analysis neatly generalizes to prove almost optimal security of the Encrypted Wegman-Carter with Davies-Meyer MAC construction. Central to our analysis is a modernization of Patarin’s mirror theorem and an exposition of how it relates to fundamental cryptographic problems.
7 schema:editor N617975792fd3411ca08cea629f488f50
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf Nc0379fd46c5d4ccfa6c2df83aa842157
11 schema:keywords CRYPTO 2016
12 Cogliati
13 Davies-Meyer
14 Davies-Meyer construction
15 Improved Security Analysis
16 MAC constructions
17 Seurin
18 Wegman-Carter
19 analysis
20 construction
21 cryptographic problems
22 dual
23 exposition
24 mirror theorem
25 mirror theory
26 modernization
27 n-bit permutations
28 optimal security
29 permutations
30 problem
31 security
32 security analysis
33 theorem
34 theory
35 tight security
36 schema:name Encrypted Davies-Meyer and Its Dual: Towards Optimal Security Using Mirror Theory
37 schema:pagination 556-583
38 schema:productId N668e84debb094422b41195329d2af696
39 Ndaafd18514d041779ff730460be1ab6f
40 schema:publisher N485b6f8a04a64779b124190d771297d8
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091024665
42 https://doi.org/10.1007/978-3-319-63697-9_19
43 schema:sdDatePublished 2022-10-01T06:53
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N7ff63e64bd5944cab5ad17467e2a305f
46 schema:url https://doi.org/10.1007/978-3-319-63697-9_19
47 sgo:license sg:explorer/license/
48 sgo:sdDataset chapters
49 rdf:type schema:Chapter
50 N01865c5755fb40ddbe1534ab57bfa92f rdf:first sg:person.011136377232.42
51 rdf:rest rdf:nil
52 N2dc369ce8d0f48419e95921ce03cd6b6 schema:familyName Shacham
53 schema:givenName Hovav
54 rdf:type schema:Person
55 N485b6f8a04a64779b124190d771297d8 schema:name Springer Nature
56 rdf:type schema:Organisation
57 N5a604b9925e44704b54fbcd6e5a99d24 rdf:first N2dc369ce8d0f48419e95921ce03cd6b6
58 rdf:rest rdf:nil
59 N617975792fd3411ca08cea629f488f50 rdf:first Na8c4154e38ec4c2385c89e3f90085a12
60 rdf:rest N5a604b9925e44704b54fbcd6e5a99d24
61 N668e84debb094422b41195329d2af696 schema:name doi
62 schema:value 10.1007/978-3-319-63697-9_19
63 rdf:type schema:PropertyValue
64 N7ff63e64bd5944cab5ad17467e2a305f schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N875b06c136f547979a6772bed9f38790 rdf:first sg:person.012130641461.76
67 rdf:rest N01865c5755fb40ddbe1534ab57bfa92f
68 Na8c4154e38ec4c2385c89e3f90085a12 schema:familyName Katz
69 schema:givenName Jonathan
70 rdf:type schema:Person
71 Nc0379fd46c5d4ccfa6c2df83aa842157 schema:isbn 978-3-319-63696-2
72 978-3-319-63697-9
73 schema:name Advances in Cryptology – CRYPTO 2017
74 rdf:type schema:Book
75 Ndaafd18514d041779ff730460be1ab6f schema:name dimensions_id
76 schema:value pub.1091024665
77 rdf:type schema:PropertyValue
78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
79 schema:name Information and Computing Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
82 schema:name Data Format
83 rdf:type schema:DefinedTerm
84 sg:person.011136377232.42 schema:affiliation grid-institutes:grid.8051.c
85 schema:familyName Neves
86 schema:givenName Samuel
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011136377232.42
88 rdf:type schema:Person
89 sg:person.012130641461.76 schema:affiliation grid-institutes:grid.6054.7
90 schema:familyName Mennink
91 schema:givenName Bart
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130641461.76
93 rdf:type schema:Person
94 grid-institutes:grid.6054.7 schema:alternateName CWI, Amsterdam, The Netherlands
95 schema:name CWI, Amsterdam, The Netherlands
96 Digital Security Group, Radboud University, Nijmegen, The Netherlands
97 rdf:type schema:Organization
98 grid-institutes:grid.8051.c schema:alternateName CISUC, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
99 schema:name CISUC, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
100 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...