A D-MMAP to Model a Complex Multi-state System with Loss of Units View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Juan Eloy Ruiz-Castro

ABSTRACT

A complex multi-state system subject to different types of failures and preventive maintenance, with loss of units, is modelled by considering a discrete marked Markovian arrival process. The system is composed of K units, one online and the rest in cold standby. The online unit is submitted to different types of failures and when a non-repairable failure occurs the corresponding unit is removed. Several internal degradation states are considered which are observed when a random inspection occurs. This unit is subject to internal repairable failure, external shocks and preventive maintenance. If one internal repairable failure occurs, the unit goes to the repair facility for corrective repair, if a major degradation level is observed by inspection, the unit goes to preventive maintenance and when one external shock happens, this one may produce an aggravation of the internal degradation level, cumulative external damage or external extreme failure (non-repairable failure). Preventive maintenance and corrective repair times follow different distributions. The system is modelled in transient regime and relevant performance measures are obtained. All results are expressed in algorithmic and computational form and they have been implemented computationally with MATLAB and R. A numerical example shows the versatility of the model. More... »

PAGES

39-58

References to SciGraph publications

Book

TITLE

Recent Advances in Multi-state Systems Reliability

ISBN

978-3-319-63422-7
978-3-319-63423-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-63423-4_3

DOI

http://dx.doi.org/10.1007/978-3-319-63423-4_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091199375


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "University of Granada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruiz-Castro", 
        "givenName": "Juan Eloy", 
        "id": "sg:person.010465425426.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010465425426.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/s0021900200033465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001847241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2016.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004618008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1004863228", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84996-320-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004863228", 
          "https://doi.org/10.1007/978-1-84996-320-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84996-320-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004863228", 
          "https://doi.org/10.1007/978-1-84996-320-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ress.2015.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007433153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207721.2013.827258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018983765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0740817x.2015.1125041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022071802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200006975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030909761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-7330-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032441839", 
          "https://doi.org/10.1007/978-1-4614-7330-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-7330-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032441839", 
          "https://doi.org/10.1007/978-1-4614-7330-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020981005544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038913081", 
          "https://doi.org/10.1023/a:1020981005544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tr.2010.2048679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061783460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tr.2010.2054173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061783471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tr.2013.2270427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061783739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tr.2015.2413031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061783904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tr.2015.2419620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061783921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoap/1050689597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064397817"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "A complex multi-state system subject to different types of failures and preventive maintenance, with loss of units, is modelled by considering a discrete marked Markovian arrival process. The system is composed of K units, one online and the rest in cold standby. The online unit is submitted to different types of failures and when a non-repairable failure occurs the corresponding unit is removed. Several internal degradation states are considered which are observed when a random inspection occurs. This unit is subject to internal repairable failure, external shocks and preventive maintenance. If one internal repairable failure occurs, the unit goes to the repair facility for corrective repair, if a major degradation level is observed by inspection, the unit goes to preventive maintenance and when one external shock happens, this one may produce an aggravation of the internal degradation level, cumulative external damage or external extreme failure (non-repairable failure). Preventive maintenance and corrective repair times follow different distributions. The system is modelled in transient regime and relevant performance measures are obtained. All results are expressed in algorithmic and computational form and they have been implemented computationally with MATLAB and R. A numerical example shows the versatility of the model.", 
    "editor": [
      {
        "familyName": "Lisnianski", 
        "givenName": "Anatoly", 
        "type": "Person"
      }, 
      {
        "familyName": "Frenkel", 
        "givenName": "Ilia", 
        "type": "Person"
      }, 
      {
        "familyName": "Karagrigoriou", 
        "givenName": "Alex", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-63423-4_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-63422-7", 
        "978-3-319-63423-4"
      ], 
      "name": "Recent Advances in Multi-state Systems Reliability", 
      "type": "Book"
    }, 
    "name": "A D-MMAP to Model a Complex Multi-state System with Loss of Units", 
    "pagination": "39-58", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-63423-4_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8a296d1d0adec8a3bc235d520a3ea1523f45dc6f29dbeaf0c662243b1ea38536"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091199375"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-63423-4_3", 
      "https://app.dimensions.ai/details/publication/pub.1091199375"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000280.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-63423-4_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-63423-4_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-63423-4_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-63423-4_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-63423-4_3'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      23 PREDICATES      43 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-63423-4_3 schema:about anzsrc-for:09
2 anzsrc-for:0905
3 schema:author N7743ae9caee84605b11431608bed4465
4 schema:citation sg:pub.10.1007/978-1-4614-7330-5
5 sg:pub.10.1007/978-1-84996-320-6
6 sg:pub.10.1023/a:1020981005544
7 https://app.dimensions.ai/details/publication/pub.1004863228
8 https://doi.org/10.1016/j.ejor.2016.02.007
9 https://doi.org/10.1016/j.ress.2015.09.004
10 https://doi.org/10.1017/s0021900200006975
11 https://doi.org/10.1017/s0021900200033465
12 https://doi.org/10.1080/00207721.2013.827258
13 https://doi.org/10.1080/0740817x.2015.1125041
14 https://doi.org/10.1109/tr.2010.2048679
15 https://doi.org/10.1109/tr.2010.2054173
16 https://doi.org/10.1109/tr.2013.2270427
17 https://doi.org/10.1109/tr.2015.2413031
18 https://doi.org/10.1109/tr.2015.2419620
19 https://doi.org/10.1214/aoap/1050689597
20 schema:datePublished 2018
21 schema:datePublishedReg 2018-01-01
22 schema:description A complex multi-state system subject to different types of failures and preventive maintenance, with loss of units, is modelled by considering a discrete marked Markovian arrival process. The system is composed of K units, one online and the rest in cold standby. The online unit is submitted to different types of failures and when a non-repairable failure occurs the corresponding unit is removed. Several internal degradation states are considered which are observed when a random inspection occurs. This unit is subject to internal repairable failure, external shocks and preventive maintenance. If one internal repairable failure occurs, the unit goes to the repair facility for corrective repair, if a major degradation level is observed by inspection, the unit goes to preventive maintenance and when one external shock happens, this one may produce an aggravation of the internal degradation level, cumulative external damage or external extreme failure (non-repairable failure). Preventive maintenance and corrective repair times follow different distributions. The system is modelled in transient regime and relevant performance measures are obtained. All results are expressed in algorithmic and computational form and they have been implemented computationally with MATLAB and R. A numerical example shows the versatility of the model.
23 schema:editor Nd00b9cf70a054eb78df07e759b507a28
24 schema:genre chapter
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N775496a8dc85493a824d4caaeef1dee1
28 schema:name A D-MMAP to Model a Complex Multi-state System with Loss of Units
29 schema:pagination 39-58
30 schema:productId N8e84a0fe036d44649b4d6f2b81a775a3
31 Nc606e587a45d490c863365cd2244f382
32 Ndc677fd8a93f4b1697e26530878f0535
33 schema:publisher Nb6eabbbc04ef48b897e0c3bd0696fd84
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091199375
35 https://doi.org/10.1007/978-3-319-63423-4_3
36 schema:sdDatePublished 2019-04-15T13:32
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N879ce3246b8949ce96dedaa91210c5a5
39 schema:url http://link.springer.com/10.1007/978-3-319-63423-4_3
40 sgo:license sg:explorer/license/
41 sgo:sdDataset chapters
42 rdf:type schema:Chapter
43 N0435de9ebd45454aba04957ece9646c3 schema:familyName Karagrigoriou
44 schema:givenName Alex
45 rdf:type schema:Person
46 N08b493c32ea14595bfee7c0d9697fbcb schema:familyName Lisnianski
47 schema:givenName Anatoly
48 rdf:type schema:Person
49 N0e899f8d33d245d3bce1ad91d5150970 schema:familyName Frenkel
50 schema:givenName Ilia
51 rdf:type schema:Person
52 N20fe8248f1b541889b124184002bdf4a rdf:first N0435de9ebd45454aba04957ece9646c3
53 rdf:rest rdf:nil
54 N7743ae9caee84605b11431608bed4465 rdf:first sg:person.010465425426.40
55 rdf:rest rdf:nil
56 N775496a8dc85493a824d4caaeef1dee1 schema:isbn 978-3-319-63422-7
57 978-3-319-63423-4
58 schema:name Recent Advances in Multi-state Systems Reliability
59 rdf:type schema:Book
60 N84864c9009424acca104a19e2e49d657 schema:name University of Granada
61 rdf:type schema:Organization
62 N879ce3246b8949ce96dedaa91210c5a5 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N8e84a0fe036d44649b4d6f2b81a775a3 schema:name readcube_id
65 schema:value 8a296d1d0adec8a3bc235d520a3ea1523f45dc6f29dbeaf0c662243b1ea38536
66 rdf:type schema:PropertyValue
67 Na0153aba165a40afa9b1895349848c71 rdf:first N0e899f8d33d245d3bce1ad91d5150970
68 rdf:rest N20fe8248f1b541889b124184002bdf4a
69 Nb6eabbbc04ef48b897e0c3bd0696fd84 schema:location Cham
70 schema:name Springer International Publishing
71 rdf:type schema:Organisation
72 Nc606e587a45d490c863365cd2244f382 schema:name doi
73 schema:value 10.1007/978-3-319-63423-4_3
74 rdf:type schema:PropertyValue
75 Nd00b9cf70a054eb78df07e759b507a28 rdf:first N08b493c32ea14595bfee7c0d9697fbcb
76 rdf:rest Na0153aba165a40afa9b1895349848c71
77 Ndc677fd8a93f4b1697e26530878f0535 schema:name dimensions_id
78 schema:value pub.1091199375
79 rdf:type schema:PropertyValue
80 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
81 schema:name Engineering
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
84 schema:name Civil Engineering
85 rdf:type schema:DefinedTerm
86 sg:person.010465425426.40 schema:affiliation N84864c9009424acca104a19e2e49d657
87 schema:familyName Ruiz-Castro
88 schema:givenName Juan Eloy
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010465425426.40
90 rdf:type schema:Person
91 sg:pub.10.1007/978-1-4614-7330-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032441839
92 https://doi.org/10.1007/978-1-4614-7330-5
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/978-1-84996-320-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004863228
95 https://doi.org/10.1007/978-1-84996-320-6
96 rdf:type schema:CreativeWork
97 sg:pub.10.1023/a:1020981005544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038913081
98 https://doi.org/10.1023/a:1020981005544
99 rdf:type schema:CreativeWork
100 https://app.dimensions.ai/details/publication/pub.1004863228 schema:CreativeWork
101 https://doi.org/10.1016/j.ejor.2016.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004618008
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.ress.2015.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007433153
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1017/s0021900200006975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030909761
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1017/s0021900200033465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001847241
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1080/00207721.2013.827258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018983765
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1080/0740817x.2015.1125041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022071802
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/tr.2010.2048679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061783460
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/tr.2010.2054173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061783471
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/tr.2013.2270427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061783739
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/tr.2015.2413031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061783904
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/tr.2015.2419620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061783921
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1214/aoap/1050689597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064397817
124 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...