Statistical Life Time Prediction Under Tension Loading for Unidirectional CFRP with Thermoplastics as Matrices View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Masayuki Nakada , Yoko Morisawa , Yasushi Miyano

ABSTRACT

We have proposed the life prediction method for the statistical creep failure time under the tension loading along the longitudinal direction of unidirectional CFRP from the statistical static strengths of unidirectional CFRP measured at various temperatures. First, a method of predicting the statistical creep failure time of CFRP is explained briefly based on Christensen’s model of viscoelastic crack kinetics. Second, two types of unidirectional CFRP which consist of carbon fiber T300–3000 with thermosetting resin and thermoplastics as matrices, respectively. Third, the static strengths of these unidirectional CFRPs are experimentally and statistically measured at various temperatures. Then the creep failure times of these unidirectional CFRPs are predicted statistically using the statistical static strengths at various temperatures. Finally, the creep failure times of these unidirectional CFRPs are measured experimentally using these unidirectional CFRPs for comparison with the predicted ones. More... »

PAGES

19-24

Book

TITLE

Challenges in Mechanics of Time Dependent Materials, Volume 2

ISBN

978-3-319-63392-3
978-3-319-63393-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-63393-0_4

DOI

http://dx.doi.org/10.1007/978-3-319-63393-0_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092246139


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Materials System Research Laboratory, Kanazawa Institute of Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakada", 
        "givenName": "Masayuki", 
        "id": "sg:person.014144672716.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014144672716.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Materials System Research Laboratory, Kanazawa Institute of Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morisawa", 
        "givenName": "Yoko", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Materials System Research Laboratory, Kanazawa Institute of Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyano", 
        "givenName": "Yasushi", 
        "id": "sg:person.014750603631.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014750603631.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0266-3538(90)90042-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003280876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0266-3538(90)90042-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003280876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/156855199x00236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005164300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0263-8223(89)90074-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009833665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0263-8223(89)90074-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009833665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02317988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017023639", 
          "https://doi.org/10.1007/bf02317988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02317988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017023639", 
          "https://doi.org/10.1007/bf02317988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11340-015-0049-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017460608", 
          "https://doi.org/10.1007/s11340-015-0049-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09243046.2013.777172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031846714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10704-005-9062-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048304712", 
          "https://doi.org/10.1007/s10704-005-9062-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10704-005-9062-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048304712", 
          "https://doi.org/10.1007/s10704-005-9062-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0021998313515019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053784464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0021998313515019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053784464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0021998308093913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063621998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0021998308093913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063621998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/002199839703100605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063625048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/002199839703100605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063625048"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "We have proposed the life prediction method for the statistical creep failure time under the tension loading along the longitudinal direction of unidirectional CFRP from the statistical static strengths of unidirectional CFRP measured at various temperatures. First, a method of predicting the statistical creep failure time of CFRP is explained briefly based on Christensen\u2019s model of viscoelastic crack kinetics. Second, two types of unidirectional CFRP which consist of carbon fiber T300\u20133000 with thermosetting resin and thermoplastics as matrices, respectively. Third, the static strengths of these unidirectional CFRPs are experimentally and statistically measured at various temperatures. Then the creep failure times of these unidirectional CFRPs are predicted statistically using the statistical static strengths at various temperatures. Finally, the creep failure times of these unidirectional CFRPs are measured experimentally using these unidirectional CFRPs for comparison with the predicted ones.", 
    "editor": [
      {
        "familyName": "Arzoumanidis", 
        "givenName": "Alex", 
        "type": "Person"
      }, 
      {
        "familyName": "Silberstein", 
        "givenName": "Meredith", 
        "type": "Person"
      }, 
      {
        "familyName": "Amirkhizi", 
        "givenName": "Alireza", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-63393-0_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-63392-3", 
        "978-3-319-63393-0"
      ], 
      "name": "Challenges in Mechanics of Time Dependent Materials, Volume 2", 
      "type": "Book"
    }, 
    "name": "Statistical Life Time Prediction Under Tension Loading for Unidirectional CFRP with Thermoplastics as Matrices", 
    "pagination": "19-24", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-63393-0_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f80651de9733513276f963eb36a97004e29d4529d8920d657788d7bf939064f4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092246139"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-63393-0_4", 
      "https://app.dimensions.ai/details/publication/pub.1092246139"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000280.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-63393-0_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-63393-0_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-63393-0_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-63393-0_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-63393-0_4'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-63393-0_4 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N459c8475104f4594aa58b02ebec36134
4 schema:citation sg:pub.10.1007/bf02317988
5 sg:pub.10.1007/s10704-005-9062-6
6 sg:pub.10.1007/s11340-015-0049-6
7 https://doi.org/10.1016/0263-8223(89)90074-3
8 https://doi.org/10.1016/0266-3538(90)90042-4
9 https://doi.org/10.1080/09243046.2013.777172
10 https://doi.org/10.1163/156855199x00236
11 https://doi.org/10.1177/0021998308093913
12 https://doi.org/10.1177/0021998313515019
13 https://doi.org/10.1177/002199839703100605
14 schema:datePublished 2018
15 schema:datePublishedReg 2018-01-01
16 schema:description We have proposed the life prediction method for the statistical creep failure time under the tension loading along the longitudinal direction of unidirectional CFRP from the statistical static strengths of unidirectional CFRP measured at various temperatures. First, a method of predicting the statistical creep failure time of CFRP is explained briefly based on Christensen’s model of viscoelastic crack kinetics. Second, two types of unidirectional CFRP which consist of carbon fiber T300–3000 with thermosetting resin and thermoplastics as matrices, respectively. Third, the static strengths of these unidirectional CFRPs are experimentally and statistically measured at various temperatures. Then the creep failure times of these unidirectional CFRPs are predicted statistically using the statistical static strengths at various temperatures. Finally, the creep failure times of these unidirectional CFRPs are measured experimentally using these unidirectional CFRPs for comparison with the predicted ones.
17 schema:editor N17bc1cec1b7d4443b875f7191a9fcfbe
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf Nbb18e77a8bc54a4ba8ee90c8591a5681
22 schema:name Statistical Life Time Prediction Under Tension Loading for Unidirectional CFRP with Thermoplastics as Matrices
23 schema:pagination 19-24
24 schema:productId N08708ae1b03a448ca9215c13da9a4f08
25 N26759ed040d74215a7ad215d744891b7
26 N7ba9bb5d92e44c70b4703abeddef726f
27 schema:publisher Nba6b759cac3d414f8f4f71bfdfc193f1
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092246139
29 https://doi.org/10.1007/978-3-319-63393-0_4
30 schema:sdDatePublished 2019-04-15T14:29
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N145e883aa89d46b4ad015cbbd454367f
33 schema:url http://link.springer.com/10.1007/978-3-319-63393-0_4
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N08708ae1b03a448ca9215c13da9a4f08 schema:name readcube_id
38 schema:value f80651de9733513276f963eb36a97004e29d4529d8920d657788d7bf939064f4
39 rdf:type schema:PropertyValue
40 N145e883aa89d46b4ad015cbbd454367f schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N17bc1cec1b7d4443b875f7191a9fcfbe rdf:first Nb3540e69ff0e4f8da199e2e442dab4ce
43 rdf:rest N6cba7628526649b098311ceef0560371
44 N24e8f2d650df4633a90eb3004677e334 schema:familyName Amirkhizi
45 schema:givenName Alireza
46 rdf:type schema:Person
47 N26759ed040d74215a7ad215d744891b7 schema:name dimensions_id
48 schema:value pub.1092246139
49 rdf:type schema:PropertyValue
50 N3cab8e1434804dbc8b46b9765c4e3c65 schema:name Materials System Research Laboratory, Kanazawa Institute of Technology
51 rdf:type schema:Organization
52 N459c8475104f4594aa58b02ebec36134 rdf:first sg:person.014144672716.69
53 rdf:rest Ne658e636510746138f96bfc13c5a7be1
54 N54f1e192ec6140e6b73060bc9483257a rdf:first N24e8f2d650df4633a90eb3004677e334
55 rdf:rest rdf:nil
56 N647478553c964a168b7e536244914317 schema:name Materials System Research Laboratory, Kanazawa Institute of Technology
57 rdf:type schema:Organization
58 N6cba7628526649b098311ceef0560371 rdf:first Nede8f25625394f7586ac289c56b847fa
59 rdf:rest N54f1e192ec6140e6b73060bc9483257a
60 N7ba9bb5d92e44c70b4703abeddef726f schema:name doi
61 schema:value 10.1007/978-3-319-63393-0_4
62 rdf:type schema:PropertyValue
63 Nb3540e69ff0e4f8da199e2e442dab4ce schema:familyName Arzoumanidis
64 schema:givenName Alex
65 rdf:type schema:Person
66 Nba6b759cac3d414f8f4f71bfdfc193f1 schema:location Cham
67 schema:name Springer International Publishing
68 rdf:type schema:Organisation
69 Nbb18e77a8bc54a4ba8ee90c8591a5681 schema:isbn 978-3-319-63392-3
70 978-3-319-63393-0
71 schema:name Challenges in Mechanics of Time Dependent Materials, Volume 2
72 rdf:type schema:Book
73 Ndd9466dbe6154ab88eba355fe019d049 schema:name Materials System Research Laboratory, Kanazawa Institute of Technology
74 rdf:type schema:Organization
75 Ne658e636510746138f96bfc13c5a7be1 rdf:first Nf1d6db4e6f214867aae91987fae0d720
76 rdf:rest Nf15969be715744a0aee4555fd550919a
77 Nede8f25625394f7586ac289c56b847fa schema:familyName Silberstein
78 schema:givenName Meredith
79 rdf:type schema:Person
80 Nf15969be715744a0aee4555fd550919a rdf:first sg:person.014750603631.13
81 rdf:rest rdf:nil
82 Nf1d6db4e6f214867aae91987fae0d720 schema:affiliation Ndd9466dbe6154ab88eba355fe019d049
83 schema:familyName Morisawa
84 schema:givenName Yoko
85 rdf:type schema:Person
86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
87 schema:name Mathematical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
90 schema:name Statistics
91 rdf:type schema:DefinedTerm
92 sg:person.014144672716.69 schema:affiliation N647478553c964a168b7e536244914317
93 schema:familyName Nakada
94 schema:givenName Masayuki
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014144672716.69
96 rdf:type schema:Person
97 sg:person.014750603631.13 schema:affiliation N3cab8e1434804dbc8b46b9765c4e3c65
98 schema:familyName Miyano
99 schema:givenName Yasushi
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014750603631.13
101 rdf:type schema:Person
102 sg:pub.10.1007/bf02317988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017023639
103 https://doi.org/10.1007/bf02317988
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s10704-005-9062-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048304712
106 https://doi.org/10.1007/s10704-005-9062-6
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s11340-015-0049-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017460608
109 https://doi.org/10.1007/s11340-015-0049-6
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0263-8223(89)90074-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009833665
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0266-3538(90)90042-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003280876
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1080/09243046.2013.777172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031846714
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1163/156855199x00236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005164300
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1177/0021998308093913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063621998
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1177/0021998313515019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053784464
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1177/002199839703100605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063625048
124 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...