Graphene-TiO2 Photocatalyst for Efficient Sunlight-Driven Degradation of Methyl Orange View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-09-27

AUTHORS

K. Alamelu , B. M. Jaffar Ali

ABSTRACT

In this study, graphene-TiO2 nanocomposites at varying composition of graphene oxide were prepared following hydrothermal method. In order to optimize the composition and time of degradation, photocatalytic efficiency was studied for the composition range 1–10 wt% of graphene oxide. The nanocomposites exhibited good visible light photocatalytic activity for the degradation of Methyl Orange in all the composition range studied. The 10 wt% graphene-TiO2 found to exhibit photocatalytic degradation of 98% Methyl Orange in 75 min which was 2.5 fold higher than pristine TiO2 nanoparticles. The band gap of the composites were found to decrease continuously from 3.0 to 2.5 eV, indicating marked red-shift in absorbance spectrum with increased graphene oxide. The enhanced photocatalytic efficiency of composite in comparison to pristine TiO2 demonstrates corresponding visible light active nature of photocatalysis. We attribute this to the synergetic effect of reduced the electron-hole pairs recombination enabled by graphene oxide intercalation, increased surface area, and creation of more reaction active sites. More... »

PAGES

53-60

Book

TITLE

Nanotechnology for Energy and Water

ISBN

978-3-319-63084-7
978-3-319-63085-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-63085-4_8

DOI

http://dx.doi.org/10.1007/978-3-319-63085-4_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092033247


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pondicherry University", 
          "id": "https://www.grid.ac/institutes/grid.412517.4", 
          "name": [
            "Centre for Green Energy Technology, Pondicherry University, RV Nagar, 605014, Kalapet, Pondicherry, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alamelu", 
        "givenName": "K.", 
        "id": "sg:person.016056454043.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016056454043.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pondicherry University", 
          "id": "https://www.grid.ac/institutes/grid.412517.4", 
          "name": [
            "Centre for Green Energy Technology, Pondicherry University, RV Nagar, 605014, Kalapet, Pondicherry, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ali", 
        "givenName": "B. M. Jaffar", 
        "id": "sg:person.01102053130.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102053130.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.solmat.2016.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007561379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solmat.2016.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007561379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm981085u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027099600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm981085u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027099600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1cs15172j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031761267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1ra00260k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036473796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1nr11411e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042632330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr00033a004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053963872"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09-27", 
    "datePublishedReg": "2017-09-27", 
    "description": "In this study, graphene-TiO2 nanocomposites at varying composition of graphene oxide were prepared following hydrothermal method. In order to optimize the composition and time of degradation, photocatalytic efficiency was studied for the composition range 1\u201310 wt% of graphene oxide. The nanocomposites exhibited good visible light photocatalytic activity for the degradation of Methyl Orange in all the composition range studied. The 10 wt% graphene-TiO2 found to exhibit photocatalytic degradation of 98% Methyl Orange in 75 min which was 2.5 fold higher than pristine TiO2 nanoparticles. The band gap of the composites were found to decrease continuously from 3.0 to 2.5 eV, indicating marked red-shift in absorbance spectrum with increased graphene oxide. The enhanced photocatalytic efficiency of composite in comparison to pristine TiO2 demonstrates corresponding visible light active nature of photocatalysis. We attribute this to the synergetic effect of reduced the electron-hole pairs recombination enabled by graphene oxide intercalation, increased surface area, and creation of more reaction active sites.", 
    "editor": [
      {
        "familyName": "Anand", 
        "givenName": "Gagan", 
        "type": "Person"
      }, 
      {
        "familyName": "Pandey", 
        "givenName": "Jitendra Kumar", 
        "type": "Person"
      }, 
      {
        "familyName": "Rana", 
        "givenName": "Sarvendra", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-63085-4_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-63084-7", 
        "978-3-319-63085-4"
      ], 
      "name": "Nanotechnology for Energy and Water", 
      "type": "Book"
    }, 
    "name": "Graphene-TiO2 Photocatalyst for Efficient Sunlight-Driven Degradation of Methyl Orange", 
    "pagination": "53-60", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-63085-4_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "907cefb6a2fd2c8feca239bbb958afaa76f9d8acc52b3c662096ff82541603b2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092033247"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-63085-4_8", 
      "https://app.dimensions.ai/details/publication/pub.1092033247"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100778_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-63085-4_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-63085-4_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-63085-4_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-63085-4_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-63085-4_8'


 

This table displays all metadata directly associated to this object as RDF triples.

100 TRIPLES      23 PREDICATES      32 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-63085-4_8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N14088fca5b41408c930448dd766b7adb
4 schema:citation https://doi.org/10.1016/j.solmat.2016.03.008
5 https://doi.org/10.1021/cm981085u
6 https://doi.org/10.1021/cr00033a004
7 https://doi.org/10.1039/c1cs15172j
8 https://doi.org/10.1039/c1nr11411e
9 https://doi.org/10.1039/c1ra00260k
10 schema:datePublished 2017-09-27
11 schema:datePublishedReg 2017-09-27
12 schema:description In this study, graphene-TiO2 nanocomposites at varying composition of graphene oxide were prepared following hydrothermal method. In order to optimize the composition and time of degradation, photocatalytic efficiency was studied for the composition range 1–10 wt% of graphene oxide. The nanocomposites exhibited good visible light photocatalytic activity for the degradation of Methyl Orange in all the composition range studied. The 10 wt% graphene-TiO2 found to exhibit photocatalytic degradation of 98% Methyl Orange in 75 min which was 2.5 fold higher than pristine TiO2 nanoparticles. The band gap of the composites were found to decrease continuously from 3.0 to 2.5 eV, indicating marked red-shift in absorbance spectrum with increased graphene oxide. The enhanced photocatalytic efficiency of composite in comparison to pristine TiO2 demonstrates corresponding visible light active nature of photocatalysis. We attribute this to the synergetic effect of reduced the electron-hole pairs recombination enabled by graphene oxide intercalation, increased surface area, and creation of more reaction active sites.
13 schema:editor N187ad32ef807450d9f682d37c989e3bc
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N531ef83265604d6ca1ba444eda270cdf
18 schema:name Graphene-TiO2 Photocatalyst for Efficient Sunlight-Driven Degradation of Methyl Orange
19 schema:pagination 53-60
20 schema:productId N8d0e9aaaaa6342b5a3383d04807751e3
21 N9006825e82a64d179587a354c61e5990
22 Nbc9fd3048245467e8498d65bc2a5bdb4
23 schema:publisher Nc3591121028b438a991f356bd33fe6c2
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092033247
25 https://doi.org/10.1007/978-3-319-63085-4_8
26 schema:sdDatePublished 2019-04-16T04:59
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N86f9b1b4e72345dda5854795a27793a7
29 schema:url https://link.springer.com/10.1007%2F978-3-319-63085-4_8
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N14088fca5b41408c930448dd766b7adb rdf:first sg:person.016056454043.25
34 rdf:rest Na235e602cf354c708c0835992a817f17
35 N187ad32ef807450d9f682d37c989e3bc rdf:first N72550cf82da54d7095dc2c20bf277d1b
36 rdf:rest N649353b826da4721a6e9e6028a031765
37 N531ef83265604d6ca1ba444eda270cdf schema:isbn 978-3-319-63084-7
38 978-3-319-63085-4
39 schema:name Nanotechnology for Energy and Water
40 rdf:type schema:Book
41 N649353b826da4721a6e9e6028a031765 rdf:first N691284e707544ae18c412b739b4f355b
42 rdf:rest Nba1476d7ba1248eaa30853f076376889
43 N691284e707544ae18c412b739b4f355b schema:familyName Pandey
44 schema:givenName Jitendra Kumar
45 rdf:type schema:Person
46 N72550cf82da54d7095dc2c20bf277d1b schema:familyName Anand
47 schema:givenName Gagan
48 rdf:type schema:Person
49 N86f9b1b4e72345dda5854795a27793a7 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N8d0e9aaaaa6342b5a3383d04807751e3 schema:name readcube_id
52 schema:value 907cefb6a2fd2c8feca239bbb958afaa76f9d8acc52b3c662096ff82541603b2
53 rdf:type schema:PropertyValue
54 N9006825e82a64d179587a354c61e5990 schema:name dimensions_id
55 schema:value pub.1092033247
56 rdf:type schema:PropertyValue
57 Na235e602cf354c708c0835992a817f17 rdf:first sg:person.01102053130.45
58 rdf:rest rdf:nil
59 Nba1476d7ba1248eaa30853f076376889 rdf:first Ndf256b8321d74efba3ffec1aab4091e2
60 rdf:rest rdf:nil
61 Nbc9fd3048245467e8498d65bc2a5bdb4 schema:name doi
62 schema:value 10.1007/978-3-319-63085-4_8
63 rdf:type schema:PropertyValue
64 Nc3591121028b438a991f356bd33fe6c2 schema:location Cham
65 schema:name Springer International Publishing
66 rdf:type schema:Organisation
67 Ndf256b8321d74efba3ffec1aab4091e2 schema:familyName Rana
68 schema:givenName Sarvendra
69 rdf:type schema:Person
70 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
71 schema:name Engineering
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
74 schema:name Materials Engineering
75 rdf:type schema:DefinedTerm
76 sg:person.01102053130.45 schema:affiliation https://www.grid.ac/institutes/grid.412517.4
77 schema:familyName Ali
78 schema:givenName B. M. Jaffar
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102053130.45
80 rdf:type schema:Person
81 sg:person.016056454043.25 schema:affiliation https://www.grid.ac/institutes/grid.412517.4
82 schema:familyName Alamelu
83 schema:givenName K.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016056454043.25
85 rdf:type schema:Person
86 https://doi.org/10.1016/j.solmat.2016.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007561379
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1021/cm981085u schema:sameAs https://app.dimensions.ai/details/publication/pub.1027099600
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1021/cr00033a004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053963872
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1039/c1cs15172j schema:sameAs https://app.dimensions.ai/details/publication/pub.1031761267
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1039/c1nr11411e schema:sameAs https://app.dimensions.ai/details/publication/pub.1042632330
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1039/c1ra00260k schema:sameAs https://app.dimensions.ai/details/publication/pub.1036473796
97 rdf:type schema:CreativeWork
98 https://www.grid.ac/institutes/grid.412517.4 schema:alternateName Pondicherry University
99 schema:name Centre for Green Energy Technology, Pondicherry University, RV Nagar, 605014, Kalapet, Pondicherry, India
100 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...