Properties of the Conservative Parallel Discrete Event Simulation Algorithm View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-07-29

AUTHORS

Liliia Ziganurova , Lev Shchur

ABSTRACT

We address question of synchronisation in parallel discrete event simulation (PDES) algorithms. We study synchronisation in conservative PDES model adding long-range connections between processing elements. We investigate how fraction of the random long-range connections in the synchronisation scheme influences the simulation time profile of PDES. We found that small fraction of random distant connections enhance synchronisation, namely, the width of the local virtual times remains constant with increasing number of processing elements. At the same time the conservative algorithm of PDES on small-world networks remains free from deadlocks. We compare our results with the case-study simulations. More... »

PAGES

246-253

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-62932-2_23

DOI

http://dx.doi.org/10.1007/978-3-319-62932-2_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090979699


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Research University Higher School of Economics", 
          "id": "https://www.grid.ac/institutes/grid.410682.9", 
          "name": [
            "Scientific Center in Chernogolovka, 142432, Chernogolovka, Moscow Region, Russia", 
            "National Research University Higher School of Economics, 101000, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ziganurova", 
        "givenName": "Liliia", 
        "id": "sg:person.013632663635.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013632663635.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Landau Institute for Theoretical Physics", 
          "id": "https://www.grid.ac/institutes/grid.436090.8", 
          "name": [
            "Scientific Center in Chernogolovka, 142432, Chernogolovka, Moscow Region, Russia", 
            "National Research University Higher School of Economics, 101000, Moscow, Russia", 
            "Landau Institute for Theoretical Physics, 142432, Chernogolovka, Moscow Region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shchur", 
        "givenName": "Lev", 
        "id": "sg:person.0644514541.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644514541.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreve.73.066115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010991046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.066115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010991046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3916.3988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012287092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.2746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014647635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.2746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014647635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2015.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029344986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.026703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031528393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.026703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031528393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/84537.84545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031796676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2901378.2901400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033339339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.1351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041275683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.1351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041275683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/681/1/012047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046040349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0743-7315(02)00004-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049942303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0743-7315(02)00004-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049942303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/640/1/012065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059165129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793614"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07-29", 
    "datePublishedReg": "2017-07-29", 
    "description": "We address question of synchronisation in parallel discrete event simulation (PDES) algorithms. We study synchronisation in conservative PDES model adding long-range connections between processing elements. We investigate how fraction of the random long-range connections in the synchronisation scheme influences the simulation time profile of PDES. We found that small fraction of random distant connections enhance synchronisation, namely, the width of the local virtual times remains constant with increasing number of processing elements. At the same time the conservative algorithm of PDES on small-world networks remains free from deadlocks. We compare our results with the case-study simulations.", 
    "editor": [
      {
        "familyName": "Malyshkin", 
        "givenName": "Victor", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-62932-2_23", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4895894", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-62931-5", 
        "978-3-319-62932-2"
      ], 
      "name": "Parallel Computing Technologies", 
      "type": "Book"
    }, 
    "name": "Properties of the Conservative Parallel Discrete Event Simulation Algorithm", 
    "pagination": "246-253", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-62932-2_23"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9add3ff9c300f4f62b3b97e5ae82c118b5206c8f63d8590f4b49fce4141bf01a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090979699"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-62932-2_23", 
      "https://app.dimensions.ai/details/publication/pub.1090979699"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100791_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-62932-2_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-62932-2_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-62932-2_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-62932-2_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-62932-2_23'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      23 PREDICATES      39 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-62932-2_23 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0b669e9649164f6187c6fd4766cbed9c
4 schema:citation sg:pub.10.1038/30918
5 https://doi.org/10.1016/j.cpc.2015.11.001
6 https://doi.org/10.1016/s0743-7315(02)00004-7
7 https://doi.org/10.1088/1742-6596/640/1/012065
8 https://doi.org/10.1088/1742-6596/681/1/012047
9 https://doi.org/10.1103/physreve.70.026703
10 https://doi.org/10.1103/physreve.73.066115
11 https://doi.org/10.1103/physrevlett.56.889
12 https://doi.org/10.1103/physrevlett.76.2746
13 https://doi.org/10.1103/physrevlett.84.1351
14 https://doi.org/10.1145/2901378.2901400
15 https://doi.org/10.1145/3916.3988
16 https://doi.org/10.1145/84537.84545
17 schema:datePublished 2017-07-29
18 schema:datePublishedReg 2017-07-29
19 schema:description We address question of synchronisation in parallel discrete event simulation (PDES) algorithms. We study synchronisation in conservative PDES model adding long-range connections between processing elements. We investigate how fraction of the random long-range connections in the synchronisation scheme influences the simulation time profile of PDES. We found that small fraction of random distant connections enhance synchronisation, namely, the width of the local virtual times remains constant with increasing number of processing elements. At the same time the conservative algorithm of PDES on small-world networks remains free from deadlocks. We compare our results with the case-study simulations.
20 schema:editor N4c5e6ab7ee86479490a83eabd5acf2ca
21 schema:genre chapter
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N812f5c2f422947569979d8db5be50979
25 schema:name Properties of the Conservative Parallel Discrete Event Simulation Algorithm
26 schema:pagination 246-253
27 schema:productId N0dedcbd9cb354365a1837dae4e326115
28 Ndbd8cd62dca3406ea5488ad256cd482a
29 Nfa0b2ff9736f472ebae83085884f7e08
30 schema:publisher Na1c67f65ceba449ea3c8ab20e92e4408
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090979699
32 https://doi.org/10.1007/978-3-319-62932-2_23
33 schema:sdDatePublished 2019-04-16T05:00
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N86966ea1efea4136abc7ab8483501308
36 schema:url https://link.springer.com/10.1007%2F978-3-319-62932-2_23
37 sgo:license sg:explorer/license/
38 sgo:sdDataset chapters
39 rdf:type schema:Chapter
40 N0b669e9649164f6187c6fd4766cbed9c rdf:first sg:person.013632663635.66
41 rdf:rest N5fae32fa3b9b44a6874583ad3e77c122
42 N0dedcbd9cb354365a1837dae4e326115 schema:name dimensions_id
43 schema:value pub.1090979699
44 rdf:type schema:PropertyValue
45 N4c5e6ab7ee86479490a83eabd5acf2ca rdf:first N9be93ec60ee64998a81a026e668fe25c
46 rdf:rest rdf:nil
47 N5fae32fa3b9b44a6874583ad3e77c122 rdf:first sg:person.0644514541.83
48 rdf:rest rdf:nil
49 N812f5c2f422947569979d8db5be50979 schema:isbn 978-3-319-62931-5
50 978-3-319-62932-2
51 schema:name Parallel Computing Technologies
52 rdf:type schema:Book
53 N86966ea1efea4136abc7ab8483501308 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N9be93ec60ee64998a81a026e668fe25c schema:familyName Malyshkin
56 schema:givenName Victor
57 rdf:type schema:Person
58 Na1c67f65ceba449ea3c8ab20e92e4408 schema:location Cham
59 schema:name Springer International Publishing
60 rdf:type schema:Organisation
61 Ndbd8cd62dca3406ea5488ad256cd482a schema:name readcube_id
62 schema:value 9add3ff9c300f4f62b3b97e5ae82c118b5206c8f63d8590f4b49fce4141bf01a
63 rdf:type schema:PropertyValue
64 Nfa0b2ff9736f472ebae83085884f7e08 schema:name doi
65 schema:value 10.1007/978-3-319-62932-2_23
66 rdf:type schema:PropertyValue
67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
68 schema:name Information and Computing Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
71 schema:name Artificial Intelligence and Image Processing
72 rdf:type schema:DefinedTerm
73 sg:grant.4895894 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-62932-2_23
74 rdf:type schema:MonetaryGrant
75 sg:person.013632663635.66 schema:affiliation https://www.grid.ac/institutes/grid.410682.9
76 schema:familyName Ziganurova
77 schema:givenName Liliia
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013632663635.66
79 rdf:type schema:Person
80 sg:person.0644514541.83 schema:affiliation https://www.grid.ac/institutes/grid.436090.8
81 schema:familyName Shchur
82 schema:givenName Lev
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644514541.83
84 rdf:type schema:Person
85 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
86 https://doi.org/10.1038/30918
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/j.cpc.2015.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029344986
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/s0743-7315(02)00004-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049942303
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1088/1742-6596/640/1/012065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059165129
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1088/1742-6596/681/1/012047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046040349
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physreve.70.026703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031528393
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physreve.73.066115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010991046
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physrevlett.56.889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793614
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physrevlett.76.2746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014647635
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevlett.84.1351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041275683
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1145/2901378.2901400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033339339
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1145/3916.3988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012287092
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1145/84537.84545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031796676
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.410682.9 schema:alternateName National Research University Higher School of Economics
113 schema:name National Research University Higher School of Economics, 101000, Moscow, Russia
114 Scientific Center in Chernogolovka, 142432, Chernogolovka, Moscow Region, Russia
115 rdf:type schema:Organization
116 https://www.grid.ac/institutes/grid.436090.8 schema:alternateName Landau Institute for Theoretical Physics
117 schema:name Landau Institute for Theoretical Physics, 142432, Chernogolovka, Moscow Region, Russia
118 National Research University Higher School of Economics, 101000, Moscow, Russia
119 Scientific Center in Chernogolovka, 142432, Chernogolovka, Moscow Region, Russia
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...