Ontology type: schema:Chapter
2017-09-27
AUTHORS ABSTRACTLet S be a symmetric operator with finite and equal defect numbers d in the Hilbert space , and with a boundary triplet . Following the method of E.A. Coddington, we describe all self-adjoint extensions of S in a Hilbert space where . The parameters in this description are matrices , where determine the compression . According to a result of W. Stenger, this compression is self-adjoint. Being a canonical self-adjoint extension of S, can be chosen as the fixed extension in M.G. Krein’s formula for the description of all generalized resolvents of S. Among other results, we describe those parameters which in Krein’s formula correspond to self-adjoint extensions of S having as their compression to . More... »
PAGES135-163
Advances in Complex Analysis and Operator Theory
ISBN
978-3-319-62361-0
978-3-319-62362-7
http://scigraph.springernature.com/pub.10.1007/978-3-319-62362-7_6
DOIhttp://dx.doi.org/10.1007/978-3-319-62362-7_6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1092033156
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Groningen",
"id": "https://www.grid.ac/institutes/grid.4830.f",
"name": [
"Johann Bernoulli Institute of Mathematics and Computer Science, University of Groningen, P.O. Box 407, 9700 AK, Groningen, The Netherlands"
],
"type": "Organization"
},
"familyName": "Dijksma",
"givenName": "Aad",
"id": "sg:person.013762723211.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "TU Wien",
"id": "https://www.grid.ac/institutes/grid.5329.d",
"name": [
"Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8\u201310, A-1040, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Langer",
"givenName": "Heinz",
"id": "sg:person.07450173411.71",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71"
],
"type": "Person"
}
],
"datePublished": "2017-09-27",
"datePublishedReg": "2017-09-27",
"description": "Let S be a symmetric operator with finite and equal defect numbers d in the Hilbert space , and with a boundary triplet . Following the method of E.A. Coddington, we describe all self-adjoint extensions of S in a Hilbert space where . The parameters in this description are matrices , where determine the compression . According to a result of W. Stenger, this compression is self-adjoint. Being a canonical self-adjoint extension of S, can be chosen as the fixed extension in M.G. Krein\u2019s formula for the description of all generalized resolvents of S. Among other results, we describe those parameters which in Krein\u2019s formula correspond to self-adjoint extensions of S having as their compression to .",
"editor": [
{
"familyName": "Colombo",
"givenName": "Fabrizio",
"type": "Person"
},
{
"familyName": "Sabadini",
"givenName": "Irene",
"type": "Person"
},
{
"familyName": "Struppa",
"givenName": "Daniele C.",
"type": "Person"
},
{
"familyName": "Vajiac",
"givenName": "Mihaela B.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-62362-7_6",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-62361-0",
"978-3-319-62362-7"
],
"name": "Advances in Complex Analysis and Operator Theory",
"type": "Book"
},
"name": "Finite-dimensional Self-adjoint Extensions of a Symmetric Operator with Finite Defect and their Compressions",
"pagination": "135-163",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-62362-7_6"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"cfa297394f2ff9dc53af6a8da6661e9cc3f717fe6b88a4dae8ab398ad13e8af2"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1092033156"
]
}
],
"publisher": {
"location": "Cham",
"name": "Springer International Publishing",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-62362-7_6",
"https://app.dimensions.ai/details/publication/pub.1092033156"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T05:00",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100788_00000000.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-319-62362-7_6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-62362-7_6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-62362-7_6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-62362-7_6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-62362-7_6'
This table displays all metadata directly associated to this object as RDF triples.
90 TRIPLES
22 PREDICATES
26 URIs
19 LITERALS
8 BLANK NODES