Finite-dimensional Self-adjoint Extensions of a Symmetric Operator with Finite Defect and their Compressions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-09-27

AUTHORS

Aad Dijksma , Heinz Langer

ABSTRACT

Let S be a symmetric operator with finite and equal defect numbers d in the Hilbert space , and with a boundary triplet . Following the method of E.A. Coddington, we describe all self-adjoint extensions of S in a Hilbert space where . The parameters in this description are matrices , where determine the compression . According to a result of W. Stenger, this compression is self-adjoint. Being a canonical self-adjoint extension of S, can be chosen as the fixed extension in M.G. Krein’s formula for the description of all generalized resolvents of S. Among other results, we describe those parameters which in Krein’s formula correspond to self-adjoint extensions of S having as their compression to . More... »

PAGES

135-163

Book

TITLE

Advances in Complex Analysis and Operator Theory

ISBN

978-3-319-62361-0
978-3-319-62362-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-62362-7_6

DOI

http://dx.doi.org/10.1007/978-3-319-62362-7_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092033156


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Johann Bernoulli Institute of Mathematics and Computer Science, University of Groningen, P.O. Box 407, 9700 AK, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "Aad", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8\u201310, A-1040, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langer", 
        "givenName": "Heinz", 
        "id": "sg:person.07450173411.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-09-27", 
    "datePublishedReg": "2017-09-27", 
    "description": "Let S be a symmetric operator with finite and equal defect numbers d in the Hilbert space , and with a boundary triplet . Following the method of E.A. Coddington, we describe all self-adjoint extensions of S in a Hilbert space where . The parameters in this description are matrices , where determine the compression . According to a result of W. Stenger, this compression is self-adjoint. Being a canonical self-adjoint extension of S, can be chosen as the fixed extension in M.G. Krein\u2019s formula for the description of all generalized resolvents of S. Among other results, we describe those parameters which in Krein\u2019s formula correspond to self-adjoint extensions of S having as their compression to .", 
    "editor": [
      {
        "familyName": "Colombo", 
        "givenName": "Fabrizio", 
        "type": "Person"
      }, 
      {
        "familyName": "Sabadini", 
        "givenName": "Irene", 
        "type": "Person"
      }, 
      {
        "familyName": "Struppa", 
        "givenName": "Daniele C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Vajiac", 
        "givenName": "Mihaela B.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-62362-7_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-62361-0", 
        "978-3-319-62362-7"
      ], 
      "name": "Advances in Complex Analysis and Operator Theory", 
      "type": "Book"
    }, 
    "name": "Finite-dimensional Self-adjoint Extensions of a Symmetric Operator with Finite Defect and their Compressions", 
    "pagination": "135-163", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-62362-7_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cfa297394f2ff9dc53af6a8da6661e9cc3f717fe6b88a4dae8ab398ad13e8af2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092033156"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-62362-7_6", 
      "https://app.dimensions.ai/details/publication/pub.1092033156"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100788_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-62362-7_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-62362-7_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-62362-7_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-62362-7_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-62362-7_6'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      22 PREDICATES      26 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-62362-7_6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N390d1d4913c14923bbaa04969ccc3ff9
4 schema:datePublished 2017-09-27
5 schema:datePublishedReg 2017-09-27
6 schema:description Let S be a symmetric operator with finite and equal defect numbers d in the Hilbert space , and with a boundary triplet . Following the method of E.A. Coddington, we describe all self-adjoint extensions of S in a Hilbert space where . The parameters in this description are matrices , where determine the compression . According to a result of W. Stenger, this compression is self-adjoint. Being a canonical self-adjoint extension of S, can be chosen as the fixed extension in M.G. Krein’s formula for the description of all generalized resolvents of S. Among other results, we describe those parameters which in Krein’s formula correspond to self-adjoint extensions of S having as their compression to .
7 schema:editor Nda1abbb1792441de9b708fdf3cde31a8
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nd06560be00e2428dbfbf8e4e9017c4c9
12 schema:name Finite-dimensional Self-adjoint Extensions of a Symmetric Operator with Finite Defect and their Compressions
13 schema:pagination 135-163
14 schema:productId N449f062d81f8428dad0b042ec3d73268
15 N778ee86ea96d4e458f61fe5611bb60d1
16 N965aad7205004db8a0c349472ab8a48c
17 schema:publisher N02f6eb3b6e5443e9986e7bf4554dbc58
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092033156
19 https://doi.org/10.1007/978-3-319-62362-7_6
20 schema:sdDatePublished 2019-04-16T05:00
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N94d620f2068a4c5c834328480018a084
23 schema:url https://link.springer.com/10.1007%2F978-3-319-62362-7_6
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N02f6eb3b6e5443e9986e7bf4554dbc58 schema:location Cham
28 schema:name Springer International Publishing
29 rdf:type schema:Organisation
30 N330212cdbebe4f31bc3d74c7fd241949 schema:familyName Colombo
31 schema:givenName Fabrizio
32 rdf:type schema:Person
33 N390d1d4913c14923bbaa04969ccc3ff9 rdf:first sg:person.013762723211.39
34 rdf:rest N6f8962bc641e4cf7ab8e33121e200217
35 N449f062d81f8428dad0b042ec3d73268 schema:name dimensions_id
36 schema:value pub.1092033156
37 rdf:type schema:PropertyValue
38 N51c94569465c47068ecff43e4f00af28 rdf:first N89e384fe29e0450a9bf286adea37a18c
39 rdf:rest Nc0d06dda9c8a40af92cc5e67d750dde0
40 N6928fdf588334c05b9ceee4d84df4ff6 rdf:first Ncc1208fdfcc347028bc3984b765ca0b9
41 rdf:rest rdf:nil
42 N6f8962bc641e4cf7ab8e33121e200217 rdf:first sg:person.07450173411.71
43 rdf:rest rdf:nil
44 N778ee86ea96d4e458f61fe5611bb60d1 schema:name readcube_id
45 schema:value cfa297394f2ff9dc53af6a8da6661e9cc3f717fe6b88a4dae8ab398ad13e8af2
46 rdf:type schema:PropertyValue
47 N89e384fe29e0450a9bf286adea37a18c schema:familyName Sabadini
48 schema:givenName Irene
49 rdf:type schema:Person
50 N94d620f2068a4c5c834328480018a084 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N965aad7205004db8a0c349472ab8a48c schema:name doi
53 schema:value 10.1007/978-3-319-62362-7_6
54 rdf:type schema:PropertyValue
55 Nbedcc078fcf24c709f56962867872407 schema:familyName Struppa
56 schema:givenName Daniele C.
57 rdf:type schema:Person
58 Nc0d06dda9c8a40af92cc5e67d750dde0 rdf:first Nbedcc078fcf24c709f56962867872407
59 rdf:rest N6928fdf588334c05b9ceee4d84df4ff6
60 Ncc1208fdfcc347028bc3984b765ca0b9 schema:familyName Vajiac
61 schema:givenName Mihaela B.
62 rdf:type schema:Person
63 Nd06560be00e2428dbfbf8e4e9017c4c9 schema:isbn 978-3-319-62361-0
64 978-3-319-62362-7
65 schema:name Advances in Complex Analysis and Operator Theory
66 rdf:type schema:Book
67 Nda1abbb1792441de9b708fdf3cde31a8 rdf:first N330212cdbebe4f31bc3d74c7fd241949
68 rdf:rest N51c94569465c47068ecff43e4f00af28
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
73 schema:name Pure Mathematics
74 rdf:type schema:DefinedTerm
75 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
76 schema:familyName Dijksma
77 schema:givenName Aad
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
79 rdf:type schema:Person
80 sg:person.07450173411.71 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
81 schema:familyName Langer
82 schema:givenName Heinz
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71
84 rdf:type schema:Person
85 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
86 schema:name Johann Bernoulli Institute of Mathematics and Computer Science, University of Groningen, P.O. Box 407, 9700 AK, Groningen, The Netherlands
87 rdf:type schema:Organization
88 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
89 schema:name Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8–10, A-1040, Vienna, Austria
90 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...