Fischer Decomposition in Generalized Fractional Clifford Analysis View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017-09-27

AUTHORS

P. Cerejeiras , A. Fonseca , U. Kähler , N. Vieira

ABSTRACT

In this paper we present the basic tools of a fractional function theory in higher dimensions by means of a fractional correspondence to the Weyl relations via Gelfond–Leontiev operators of generalized differentiation. A Fischer decomposition is established. Furthermore, we give an algorithm for the construction of monogenic homogeneous polynomials of arbitrary degree. More... »

PAGES

37-53

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-62362-7_3

DOI

http://dx.doi.org/10.1007/978-3-319-62362-7_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092033153


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "CIDMA \u2013 Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, Campus Universit\u00e1rio de Santiago, 3810-193, Aveiro, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.7311.4", 
          "name": [
            "CIDMA \u2013 Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, Campus Universit\u00e1rio de Santiago, 3810-193, Aveiro, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cerejeiras", 
        "givenName": "P.", 
        "id": "sg:person.011544212106.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011544212106.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CIDMA \u2013 Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, Campus Universit\u00e1rio de Santiago, 3810-193, Aveiro, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.7311.4", 
          "name": [
            "CIDMA \u2013 Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, Campus Universit\u00e1rio de Santiago, 3810-193, Aveiro, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fonseca", 
        "givenName": "A.", 
        "id": "sg:person.016633427653.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016633427653.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CIDMA \u2013 Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, Campus Universit\u00e1rio de Santiago, 3810-193, Aveiro, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.7311.4", 
          "name": [
            "CIDMA \u2013 Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, Campus Universit\u00e1rio de Santiago, 3810-193, Aveiro, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u00e4hler", 
        "givenName": "U.", 
        "id": "sg:person.012146411767.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012146411767.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CIDMA \u2013 Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, Campus Universit\u00e1rio de Santiago, 3810-193, Aveiro, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.7311.4", 
          "name": [
            "CIDMA \u2013 Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, Campus Universit\u00e1rio de Santiago, 3810-193, Aveiro, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vieira", 
        "givenName": "N.", 
        "id": "sg:person.010707645175.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707645175.15"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-09-27", 
    "datePublishedReg": "2017-09-27", 
    "description": "In this paper we present the basic tools of a fractional function theory in higher dimensions by means of a fractional correspondence to the Weyl relations via Gelfond\u2013Leontiev operators of generalized differentiation. A Fischer decomposition is established. Furthermore, we give an algorithm for the construction of monogenic homogeneous polynomials of arbitrary degree.", 
    "editor": [
      {
        "familyName": "Colombo", 
        "givenName": "Fabrizio", 
        "type": "Person"
      }, 
      {
        "familyName": "Sabadini", 
        "givenName": "Irene", 
        "type": "Person"
      }, 
      {
        "familyName": "Struppa", 
        "givenName": "Daniele C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Vajiac", 
        "givenName": "Mihaela B.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-62362-7_3", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-62361-0", 
        "978-3-319-62362-7"
      ], 
      "name": "Advances in Complex Analysis and Operator Theory", 
      "type": "Book"
    }, 
    "keywords": [
      "Fischer decomposition", 
      "generalized differentiation", 
      "Weyl relations", 
      "higher dimensions", 
      "homogeneous polynomials", 
      "Clifford analysis", 
      "arbitrary degree", 
      "function theory", 
      "basic tool", 
      "polynomials", 
      "operators", 
      "decomposition", 
      "theory", 
      "algorithm", 
      "correspondence", 
      "dimensions", 
      "construction", 
      "means", 
      "tool", 
      "relation", 
      "analysis", 
      "degree", 
      "differentiation", 
      "paper"
    ], 
    "name": "Fischer Decomposition in Generalized Fractional Clifford Analysis", 
    "pagination": "37-53", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092033153"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-62362-7_3"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-62362-7_3", 
      "https://app.dimensions.ai/details/publication/pub.1092033153"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_156.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-62362-7_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-62362-7_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-62362-7_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-62362-7_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-62362-7_3'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      22 PREDICATES      48 URIs      41 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-62362-7_3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N4722e005c0b540b7ba270dec6ed4cbd9
4 schema:datePublished 2017-09-27
5 schema:datePublishedReg 2017-09-27
6 schema:description In this paper we present the basic tools of a fractional function theory in higher dimensions by means of a fractional correspondence to the Weyl relations via Gelfond–Leontiev operators of generalized differentiation. A Fischer decomposition is established. Furthermore, we give an algorithm for the construction of monogenic homogeneous polynomials of arbitrary degree.
7 schema:editor N2585c8ddb7d946f59a43d5ff890df319
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf Nc75cb261af084c8fb472c852ddc1ad04
11 schema:keywords Clifford analysis
12 Fischer decomposition
13 Weyl relations
14 algorithm
15 analysis
16 arbitrary degree
17 basic tool
18 construction
19 correspondence
20 decomposition
21 degree
22 differentiation
23 dimensions
24 function theory
25 generalized differentiation
26 higher dimensions
27 homogeneous polynomials
28 means
29 operators
30 paper
31 polynomials
32 relation
33 theory
34 tool
35 schema:name Fischer Decomposition in Generalized Fractional Clifford Analysis
36 schema:pagination 37-53
37 schema:productId N0b51bc43d470450fad433257ad6f2546
38 N3881cb3c0b614a679d63f9a4f2b6e8fd
39 schema:publisher N6140ccf494ac4e259e6e66e05c66f98e
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092033153
41 https://doi.org/10.1007/978-3-319-62362-7_3
42 schema:sdDatePublished 2022-12-01T06:47
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Ne5d139f2948f42eeba22aebaa2163b40
45 schema:url https://doi.org/10.1007/978-3-319-62362-7_3
46 sgo:license sg:explorer/license/
47 sgo:sdDataset chapters
48 rdf:type schema:Chapter
49 N0b51bc43d470450fad433257ad6f2546 schema:name dimensions_id
50 schema:value pub.1092033153
51 rdf:type schema:PropertyValue
52 N16dc2b7eb53b4bb7ac002ffcd0d40b19 schema:familyName Vajiac
53 schema:givenName Mihaela B.
54 rdf:type schema:Person
55 N2585c8ddb7d946f59a43d5ff890df319 rdf:first Ncfceb8ba48ba466ab5e28e3acc819fbf
56 rdf:rest Nc550e630149d40e0843db2e561a83525
57 N2f26accf51aa46658d51f8825c4fe4c7 rdf:first sg:person.010707645175.15
58 rdf:rest rdf:nil
59 N3881cb3c0b614a679d63f9a4f2b6e8fd schema:name doi
60 schema:value 10.1007/978-3-319-62362-7_3
61 rdf:type schema:PropertyValue
62 N3f2fd670e5a24906a400b3b27bb6be9f rdf:first Nf351be6e1ab84bcdbff150c91223055c
63 rdf:rest N655fa7273bf746f892f7c6baaf86918d
64 N4722e005c0b540b7ba270dec6ed4cbd9 rdf:first sg:person.011544212106.40
65 rdf:rest Nc1e72fcd7d944b3898f80e7abb88dd4b
66 N6140ccf494ac4e259e6e66e05c66f98e schema:name Springer Nature
67 rdf:type schema:Organisation
68 N655fa7273bf746f892f7c6baaf86918d rdf:first N16dc2b7eb53b4bb7ac002ffcd0d40b19
69 rdf:rest rdf:nil
70 Nc1e72fcd7d944b3898f80e7abb88dd4b rdf:first sg:person.016633427653.97
71 rdf:rest Nc49a51c12ddb48a3ba40b020e297781c
72 Nc49a51c12ddb48a3ba40b020e297781c rdf:first sg:person.012146411767.97
73 rdf:rest N2f26accf51aa46658d51f8825c4fe4c7
74 Nc550e630149d40e0843db2e561a83525 rdf:first Nec52bbd355354fffb31a98d8289b1655
75 rdf:rest N3f2fd670e5a24906a400b3b27bb6be9f
76 Nc75cb261af084c8fb472c852ddc1ad04 schema:isbn 978-3-319-62361-0
77 978-3-319-62362-7
78 schema:name Advances in Complex Analysis and Operator Theory
79 rdf:type schema:Book
80 Ncfceb8ba48ba466ab5e28e3acc819fbf schema:familyName Colombo
81 schema:givenName Fabrizio
82 rdf:type schema:Person
83 Ne5d139f2948f42eeba22aebaa2163b40 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nec52bbd355354fffb31a98d8289b1655 schema:familyName Sabadini
86 schema:givenName Irene
87 rdf:type schema:Person
88 Nf351be6e1ab84bcdbff150c91223055c schema:familyName Struppa
89 schema:givenName Daniele C.
90 rdf:type schema:Person
91 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
92 schema:name Mathematical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
95 schema:name Pure Mathematics
96 rdf:type schema:DefinedTerm
97 sg:person.010707645175.15 schema:affiliation grid-institutes:grid.7311.4
98 schema:familyName Vieira
99 schema:givenName N.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707645175.15
101 rdf:type schema:Person
102 sg:person.011544212106.40 schema:affiliation grid-institutes:grid.7311.4
103 schema:familyName Cerejeiras
104 schema:givenName P.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011544212106.40
106 rdf:type schema:Person
107 sg:person.012146411767.97 schema:affiliation grid-institutes:grid.7311.4
108 schema:familyName Kähler
109 schema:givenName U.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012146411767.97
111 rdf:type schema:Person
112 sg:person.016633427653.97 schema:affiliation grid-institutes:grid.7311.4
113 schema:familyName Fonseca
114 schema:givenName A.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016633427653.97
116 rdf:type schema:Person
117 grid-institutes:grid.7311.4 schema:alternateName CIDMA – Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
118 schema:name CIDMA – Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...