Multiparametric MRI and Prostate Cancer: Pitfalls and Tricks View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-07-25

AUTHORS

Violeta Catalá , Jonathan Hernández , Ferran Algaba , Oscar Laucirica , Joan C. Vilanova

ABSTRACT

Prostate cancer (PCa) is the most common cancer in men [1]. Until a few years ago, digital rectal examination, serum prostate-specific antigen (PSA) measurement, and prostate biopsy were the main tools in the diagnosis of PCa. Now, the role of multiparametric MR (mpMR) in the detection of PCa is widely accepted, but it is also recognized that prostate mpMR probably represents one of the most demanding challenges in radiology. The technique has relatively high variability in intra- and interobserver agreement [2], and its learning curve is not easy [3]. At the same time, a wide spectrum of technical MR parameters influence the mpMR evaluation. A major effort has been made to standardize the technical mpMR parameters and the mpMR reading model, as reflected in Prostate Imaging—Reporting and Data System version 2 (PI-RADS v2) [4]. PI-RADS v2 was developed by an international expert committee created by the American College of Radiology (ACR), the European Society of Urogenital Radiology (ESUR), and the AdMeTech Foundation with the aim of updating and improving upon PI-RADS v1. Certainly, the extended use of PI-RADS v2 has facilitated the reading of mpMR and improved the diagnosis of PCa [5]. However, anatomic variants and benign pathologies frequently make radiological evaluation difficult in daily practice [6]. More... »

PAGES

77-113

Book

TITLE

Atlas of Multiparametric Prostate MRI

ISBN

978-3-319-61785-5
978-3-319-61786-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-61786-2_5

DOI

http://dx.doi.org/10.1007/978-3-319-61786-2_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092014988


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Puigvert Foundation", 
          "id": "https://www.grid.ac/institutes/grid.418813.7", 
          "name": [
            "Radiology Department, Fundaci\u00f3 Puigvert, Cartagena, 340-350, 08025, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Catal\u00e1", 
        "givenName": "Violeta", 
        "id": "sg:person.0772663036.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772663036.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Puigvert Foundation", 
          "id": "https://www.grid.ac/institutes/grid.418813.7", 
          "name": [
            "Radiology Department, Fundaci\u00f3 Puigvert, Cartagena, 340-350, 08025, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hern\u00e1ndez", 
        "givenName": "Jonathan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Puigvert Foundation", 
          "id": "https://www.grid.ac/institutes/grid.418813.7", 
          "name": [
            "Pathology Department, Fundaci\u00f3 Puigvert, Carrer Cartagena, 340-350, 08025, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Algaba", 
        "givenName": "Ferran", 
        "id": "sg:person.0621247262.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621247262.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Urology Department, Sant Joan Desp\u00ed Moises Broggi Hospital, Jacinto Verdaguer 90, 08970, Sant Joan Desp\u00ed, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laucirica", 
        "givenName": "Oscar", 
        "id": "sg:person.013531452021.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013531452021.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Girona", 
          "id": "https://www.grid.ac/institutes/grid.5319.e", 
          "name": [
            "Radiology Department, Cl\u00ednica Girona, Institute Catalan of Health-IDI, University of Girona, Lorenzana 36, 17002, Girona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vilanova", 
        "givenName": "Joan C.", 
        "id": "sg:person.016603211103.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016603211103.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1148/radiol.11110663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001412574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diii.2012.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005426785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.1.5346.1640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008719031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/caac.21262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013257560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/bju.12892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016775401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pros.20859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019247343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-008-9382-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019507446", 
          "https://doi.org/10.1007/s00261-008-9382-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-008-9382-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019507446", 
          "https://doi.org/10.1007/s00261-008-9382-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4103/0970-1591.159606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021884429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31817d0506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022358183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31817d0506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022358183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13244-015-0426-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025290360", 
          "https://doi.org/10.1007/s13244-015-0426-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13244-015-0426-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025290360", 
          "https://doi.org/10.1007/s13244-015-0426-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eururo.2015.08.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030259789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pros.2990020105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033489711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2014.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037824248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1442-2042.2005.01068.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038902490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1442-2042.2005.01068.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038902490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.humpath.2010.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040118976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.23908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041315243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pop.2010.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042786947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2016.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044276231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2016.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046661741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.148.1.51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069314107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.152.1.77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069315284"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07-25", 
    "datePublishedReg": "2017-07-25", 
    "description": "Prostate cancer (PCa) is the most common cancer in men [1]. Until a few years ago, digital rectal examination, serum prostate-specific antigen (PSA) measurement, and prostate biopsy were the main tools in the diagnosis of PCa. Now, the role of multiparametric MR (mpMR) in the detection of PCa is widely accepted, but it is also recognized that prostate mpMR probably represents one of the most demanding challenges in radiology. The technique has relatively high variability in intra- and interobserver agreement [2], and its learning curve is not easy [3]. At the same time, a wide spectrum of technical MR parameters influence the mpMR evaluation. A major effort has been made to standardize the technical mpMR parameters and the mpMR reading model, as reflected in Prostate Imaging\u2014Reporting and Data System version 2 (PI-RADS v2) [4]. PI-RADS v2 was developed by an international expert committee created by the American College of Radiology (ACR), the European Society of Urogenital Radiology (ESUR), and the AdMeTech Foundation with the aim of updating and improving upon PI-RADS v1. Certainly, the extended use of PI-RADS v2 has facilitated the reading of mpMR and improved the diagnosis of PCa [5]. However, anatomic variants and benign pathologies frequently make radiological evaluation difficult in daily practice [6].", 
    "editor": [
      {
        "familyName": "Vilanova", 
        "givenName": "Joan C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Catal\u00e1", 
        "givenName": "Violeta", 
        "type": "Person"
      }, 
      {
        "familyName": "Algaba", 
        "givenName": "Ferran", 
        "type": "Person"
      }, 
      {
        "familyName": "Laucirica", 
        "givenName": "Oscar", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-61786-2_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-61785-5", 
        "978-3-319-61786-2"
      ], 
      "name": "Atlas of Multiparametric Prostate MRI", 
      "type": "Book"
    }, 
    "name": "Multiparametric MRI and Prostate Cancer: Pitfalls and Tricks", 
    "pagination": "77-113", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-61786-2_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "878ca4821ec37816cb6257fcb901956178a68689ccf43f7da572956d1f908f29"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092014988"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-61786-2_5", 
      "https://app.dimensions.ai/details/publication/pub.1092014988"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100805_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-61786-2_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-61786-2_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-61786-2_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-61786-2_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-61786-2_5'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      23 PREDICATES      47 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-61786-2_5 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author N2d9a29fe5ab740b3b295dc126c693f56
4 schema:citation sg:pub.10.1007/s00261-008-9382-x
5 sg:pub.10.1007/s13244-015-0426-9
6 https://doi.org/10.1002/jmri.23908
7 https://doi.org/10.1002/pros.20859
8 https://doi.org/10.1002/pros.2990020105
9 https://doi.org/10.1016/j.acra.2014.01.013
10 https://doi.org/10.1016/j.diii.2012.09.001
11 https://doi.org/10.1016/j.ejrad.2016.01.011
12 https://doi.org/10.1016/j.ejrad.2016.04.014
13 https://doi.org/10.1016/j.eururo.2015.08.052
14 https://doi.org/10.1016/j.humpath.2010.01.010
15 https://doi.org/10.1016/j.pop.2010.04.007
16 https://doi.org/10.1097/rli.0b013e31817d0506
17 https://doi.org/10.1111/bju.12892
18 https://doi.org/10.1111/j.1442-2042.2005.01068.x
19 https://doi.org/10.1136/bmj.1.5346.1640
20 https://doi.org/10.1148/radiol.11110663
21 https://doi.org/10.2214/ajr.148.1.51
22 https://doi.org/10.2214/ajr.152.1.77
23 https://doi.org/10.3322/caac.21262
24 https://doi.org/10.4103/0970-1591.159606
25 schema:datePublished 2017-07-25
26 schema:datePublishedReg 2017-07-25
27 schema:description Prostate cancer (PCa) is the most common cancer in men [1]. Until a few years ago, digital rectal examination, serum prostate-specific antigen (PSA) measurement, and prostate biopsy were the main tools in the diagnosis of PCa. Now, the role of multiparametric MR (mpMR) in the detection of PCa is widely accepted, but it is also recognized that prostate mpMR probably represents one of the most demanding challenges in radiology. The technique has relatively high variability in intra- and interobserver agreement [2], and its learning curve is not easy [3]. At the same time, a wide spectrum of technical MR parameters influence the mpMR evaluation. A major effort has been made to standardize the technical mpMR parameters and the mpMR reading model, as reflected in Prostate Imaging—Reporting and Data System version 2 (PI-RADS v2) [4]. PI-RADS v2 was developed by an international expert committee created by the American College of Radiology (ACR), the European Society of Urogenital Radiology (ESUR), and the AdMeTech Foundation with the aim of updating and improving upon PI-RADS v1. Certainly, the extended use of PI-RADS v2 has facilitated the reading of mpMR and improved the diagnosis of PCa [5]. However, anatomic variants and benign pathologies frequently make radiological evaluation difficult in daily practice [6].
28 schema:editor N7828d61ec28a471cb6595a10f0a40054
29 schema:genre chapter
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf Nde78d2237cb5435b94cde55b70a26809
33 schema:name Multiparametric MRI and Prostate Cancer: Pitfalls and Tricks
34 schema:pagination 77-113
35 schema:productId N4040980904ff4053ae9d8905aa4fc87b
36 N727cc031e68446d885c2c9074186879b
37 N9721bf2e754c4844bc3e45cb3edf0796
38 schema:publisher N537e81b93fd9448c8dc855b8b0448711
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092014988
40 https://doi.org/10.1007/978-3-319-61786-2_5
41 schema:sdDatePublished 2019-04-16T05:01
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nac6ca124253a4d97b24088acd5f02333
44 schema:url https://link.springer.com/10.1007%2F978-3-319-61786-2_5
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N1ea2bdd139f44e4db01365258392045b rdf:first Nd4499bf3ea94441cbb5f014030ba7d02
49 rdf:rest rdf:nil
50 N2d9a29fe5ab740b3b295dc126c693f56 rdf:first sg:person.0772663036.52
51 rdf:rest Ndb7aa82a02c24fffb53cd01a03743ff6
52 N34fd809cc36142b9a3c7e74cece81670 rdf:first sg:person.013531452021.98
53 rdf:rest Ndaad081ee516411f902302c2e5a52a16
54 N4040980904ff4053ae9d8905aa4fc87b schema:name dimensions_id
55 schema:value pub.1092014988
56 rdf:type schema:PropertyValue
57 N50ff983cda5047cea6439e24d9fea999 schema:name Urology Department, Sant Joan Despí Moises Broggi Hospital, Jacinto Verdaguer 90, 08970, Sant Joan Despí, Barcelona, Spain
58 rdf:type schema:Organization
59 N537e81b93fd9448c8dc855b8b0448711 schema:location Cham
60 schema:name Springer International Publishing
61 rdf:type schema:Organisation
62 N5a037ecbc3cf4e988928b0b4ec172ac6 schema:familyName Algaba
63 schema:givenName Ferran
64 rdf:type schema:Person
65 N6524cf6214df4f31aba7d424c1cf2c6c rdf:first N5a037ecbc3cf4e988928b0b4ec172ac6
66 rdf:rest N1ea2bdd139f44e4db01365258392045b
67 N679799f5b4c240a9abeaf9c236803be7 schema:affiliation https://www.grid.ac/institutes/grid.418813.7
68 schema:familyName Hernández
69 schema:givenName Jonathan
70 rdf:type schema:Person
71 N727cc031e68446d885c2c9074186879b schema:name readcube_id
72 schema:value 878ca4821ec37816cb6257fcb901956178a68689ccf43f7da572956d1f908f29
73 rdf:type schema:PropertyValue
74 N7828d61ec28a471cb6595a10f0a40054 rdf:first Ne41249d0f5574855bb71eefa7e17c85c
75 rdf:rest N7c071f70997c4b9b945d0d0bf37df823
76 N7c071f70997c4b9b945d0d0bf37df823 rdf:first Nc2270050d76446dda76fccdc2f3eed8a
77 rdf:rest N6524cf6214df4f31aba7d424c1cf2c6c
78 N9721bf2e754c4844bc3e45cb3edf0796 schema:name doi
79 schema:value 10.1007/978-3-319-61786-2_5
80 rdf:type schema:PropertyValue
81 Na7501a03e43a43f4a57a76f8660604f6 rdf:first sg:person.0621247262.77
82 rdf:rest N34fd809cc36142b9a3c7e74cece81670
83 Nac6ca124253a4d97b24088acd5f02333 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nc2270050d76446dda76fccdc2f3eed8a schema:familyName Catalá
86 schema:givenName Violeta
87 rdf:type schema:Person
88 Nd4499bf3ea94441cbb5f014030ba7d02 schema:familyName Laucirica
89 schema:givenName Oscar
90 rdf:type schema:Person
91 Ndaad081ee516411f902302c2e5a52a16 rdf:first sg:person.016603211103.18
92 rdf:rest rdf:nil
93 Ndb7aa82a02c24fffb53cd01a03743ff6 rdf:first N679799f5b4c240a9abeaf9c236803be7
94 rdf:rest Na7501a03e43a43f4a57a76f8660604f6
95 Nde78d2237cb5435b94cde55b70a26809 schema:isbn 978-3-319-61785-5
96 978-3-319-61786-2
97 schema:name Atlas of Multiparametric Prostate MRI
98 rdf:type schema:Book
99 Ne41249d0f5574855bb71eefa7e17c85c schema:familyName Vilanova
100 schema:givenName Joan C.
101 rdf:type schema:Person
102 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
103 schema:name Medical and Health Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
106 schema:name Oncology and Carcinogenesis
107 rdf:type schema:DefinedTerm
108 sg:person.013531452021.98 schema:affiliation N50ff983cda5047cea6439e24d9fea999
109 schema:familyName Laucirica
110 schema:givenName Oscar
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013531452021.98
112 rdf:type schema:Person
113 sg:person.016603211103.18 schema:affiliation https://www.grid.ac/institutes/grid.5319.e
114 schema:familyName Vilanova
115 schema:givenName Joan C.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016603211103.18
117 rdf:type schema:Person
118 sg:person.0621247262.77 schema:affiliation https://www.grid.ac/institutes/grid.418813.7
119 schema:familyName Algaba
120 schema:givenName Ferran
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621247262.77
122 rdf:type schema:Person
123 sg:person.0772663036.52 schema:affiliation https://www.grid.ac/institutes/grid.418813.7
124 schema:familyName Catalá
125 schema:givenName Violeta
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772663036.52
127 rdf:type schema:Person
128 sg:pub.10.1007/s00261-008-9382-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019507446
129 https://doi.org/10.1007/s00261-008-9382-x
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s13244-015-0426-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025290360
132 https://doi.org/10.1007/s13244-015-0426-9
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/jmri.23908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041315243
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/pros.20859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019247343
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/pros.2990020105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033489711
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.acra.2014.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037824248
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.diii.2012.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005426785
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ejrad.2016.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046661741
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.ejrad.2016.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044276231
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.eururo.2015.08.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030259789
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.humpath.2010.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040118976
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.pop.2010.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042786947
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1097/rli.0b013e31817d0506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022358183
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1111/bju.12892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016775401
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1111/j.1442-2042.2005.01068.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038902490
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1136/bmj.1.5346.1640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008719031
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1148/radiol.11110663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001412574
163 rdf:type schema:CreativeWork
164 https://doi.org/10.2214/ajr.148.1.51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069314107
165 rdf:type schema:CreativeWork
166 https://doi.org/10.2214/ajr.152.1.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069315284
167 rdf:type schema:CreativeWork
168 https://doi.org/10.3322/caac.21262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013257560
169 rdf:type schema:CreativeWork
170 https://doi.org/10.4103/0970-1591.159606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021884429
171 rdf:type schema:CreativeWork
172 https://www.grid.ac/institutes/grid.418813.7 schema:alternateName Puigvert Foundation
173 schema:name Pathology Department, Fundació Puigvert, Carrer Cartagena, 340-350, 08025, Barcelona, Spain
174 Radiology Department, Fundació Puigvert, Cartagena, 340-350, 08025, Barcelona, Spain
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.5319.e schema:alternateName University of Girona
177 schema:name Radiology Department, Clínica Girona, Institute Catalan of Health-IDI, University of Girona, Lorenzana 36, 17002, Girona, Spain
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...