Startup of Formatting Biological Membrane in Denitrifying Filter at Low Temperature View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019

AUTHORS

Long Wang , Yanyan Dou , Qiaoling Wan , Shuang Mao , Wen Zhang , Jiaqi Lin

ABSTRACT

Pollution and treatment of the wastewater have been the focus of environmental protection. In the microbial nitrogen removal processes, a denitrification filter has the advantages of low investment, less land occupied, high biomass and high treatment efficiency. Therefore, it is one of the most widely used processing technologies in advanced treatment. This study uses secondary effluent of the East Sewage Treatment Plant as the research object. The effluent of the waste water treatment plant (WWTP) has a low temperature about 10–20 °C. The inner diameter of the filter column is 150 mm, and the height of the column is 2.3 m. The denitrification filter used boring exposure and continuous water to select the advantage bacterium group to form biological membrane attached on the surface of the filter material. This experiment studies the different treatment effect when forming biological membrane using two different packing processes (ceramsite packing and polyethylene polyhedral hollow ring filter packing) in the denitrification filter. During the experiment, TN, NO3−–N, NO2−–N, NH4+–N, CODCr were constantly measured as well as other regular indicators. The above regular indicators show the biological membrane attachment condition during the formation of the biological membrane. To confirm this procedure successfully, the mark was that the CODcr removal rate reached 50% and the NO3−–N removal rate reached 60%. It was shown that the ceramsite packing needed 25 d, and the polyethylene polyhedral hollow ring packing needed 30 d. This experiment indicates that the startup time, membrane growth and removal efficiency of the ceramsite filter are better than the polyethylene polyhedral hollow ring filter. More... »

PAGES

275-287

References to SciGraph publications

  • 2000-10. Biological Denitrification of Groundwater in WATER, AIR, & SOIL POLLUTION
  • 1991. Nitrate Treatment Methods: An Overview in NITRATE CONTAMINATION
  • Book

    TITLE

    Sustainable Development of Water Resources and Hydraulic Engineering in China

    ISBN

    978-3-319-61629-2
    978-3-319-61630-8

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-61630-8_24

    DOI

    http://dx.doi.org/10.1007/978-3-319-61630-8_24

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104010510


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Chongqing Metrology Quality Inspection and Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.495321.8", 
              "name": [
                "Chongqing Academy of Metrology and Quality Inspection"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Long", 
            "id": "sg:person.016674056146.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016674056146.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhongyuan University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.449903.3", 
              "name": [
                "Zhongyuan University of Technology"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dou", 
            "givenName": "Yanyan", 
            "id": "sg:person.011755010657.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755010657.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Chongqing Monitoring Station, Water Quality Monitoring Network of National Urban Water Supply"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wan", 
            "givenName": "Qiaoling", 
            "id": "sg:person.010174646046.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010174646046.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chongqing Metrology Quality Inspection and Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.495321.8", 
              "name": [
                "Chongqing Academy of Metrology and Quality Inspection"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mao", 
            "givenName": "Shuang", 
            "id": "sg:person.010772226446.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010772226446.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chongqing Metrology Quality Inspection and Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.495321.8", 
              "name": [
                "Chongqing Academy of Metrology and Quality Inspection"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Wen", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hebei University of Engineering", 
              "id": "https://www.grid.ac/institutes/grid.412028.d", 
              "name": [
                "Hebei University of Engineering"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Jiaqi", 
            "id": "sg:person.012365167446.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012365167446.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0043-1354(97)00095-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022255824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.watres.2013.12.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026680299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2013.07.046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041951179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005242600186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043465775", 
              "https://doi.org/10.1023/a:1005242600186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-76040-2_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047926878", 
              "https://doi.org/10.1007/978-3-642-76040-2_26"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019", 
        "datePublishedReg": "2019-01-01", 
        "description": "Pollution and treatment of the wastewater have been the focus of environmental protection. In the microbial nitrogen removal processes, a denitrification filter has the advantages of low investment, less land occupied, high biomass and high treatment efficiency. Therefore, it is one of the most widely used processing technologies in advanced treatment. This study uses secondary effluent of the East Sewage Treatment Plant as the research object. The effluent of the waste water treatment plant (WWTP) has a low temperature about 10\u201320 \u00b0C. The inner diameter of the filter column is 150 mm, and the height of the column is 2.3 m. The denitrification filter used boring exposure and continuous water to select the advantage bacterium group to form biological membrane attached on the surface of the filter material. This experiment studies the different treatment effect when forming biological membrane using two different packing processes (ceramsite packing and polyethylene polyhedral hollow ring filter packing) in the denitrification filter. During the experiment, TN, NO3\u2212\u2013N, NO2\u2212\u2013N, NH4+\u2013N, CODCr were constantly measured as well as other regular indicators. The above regular indicators show the biological membrane attachment condition during the formation of the biological membrane. To confirm this procedure successfully, the mark was that the CODcr removal rate reached 50% and the NO3\u2212\u2013N removal rate reached 60%. It was shown that the ceramsite packing needed 25 d, and the polyethylene polyhedral hollow ring packing needed 30 d. This experiment indicates that the startup time, membrane growth and removal efficiency of the ceramsite filter are better than the polyethylene polyhedral hollow ring filter.", 
        "editor": [
          {
            "familyName": "Dong", 
            "givenName": "Wei", 
            "type": "Person"
          }, 
          {
            "familyName": "Lian", 
            "givenName": "Yanqing", 
            "type": "Person"
          }, 
          {
            "familyName": "Zhang", 
            "givenName": "Yong", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-61630-8_24", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-61629-2", 
            "978-3-319-61630-8"
          ], 
          "name": "Sustainable Development of Water Resources and Hydraulic Engineering in China", 
          "type": "Book"
        }, 
        "name": "Startup of Formatting Biological Membrane in Denitrifying Filter at Low Temperature", 
        "pagination": "275-287", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-61630-8_24"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "67308aaa74ad5e07f26800c8a0a93dfc3e48d3aeeea75dae6d2f25a658ecd98b"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104010510"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-61630-8_24", 
          "https://app.dimensions.ai/details/publication/pub.1104010510"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T16:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000604.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-61630-8_24"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-61630-8_24'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-61630-8_24'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-61630-8_24'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-61630-8_24'


     

    This table displays all metadata directly associated to this object as RDF triples.

    134 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-61630-8_24 schema:about anzsrc-for:09
    2 anzsrc-for:0904
    3 schema:author N9e5ee1dae4a84184b3d27574241c1288
    4 schema:citation sg:pub.10.1007/978-3-642-76040-2_26
    5 sg:pub.10.1023/a:1005242600186
    6 https://doi.org/10.1016/j.biortech.2013.07.046
    7 https://doi.org/10.1016/j.watres.2013.12.005
    8 https://doi.org/10.1016/s0043-1354(97)00095-x
    9 schema:datePublished 2019
    10 schema:datePublishedReg 2019-01-01
    11 schema:description Pollution and treatment of the wastewater have been the focus of environmental protection. In the microbial nitrogen removal processes, a denitrification filter has the advantages of low investment, less land occupied, high biomass and high treatment efficiency. Therefore, it is one of the most widely used processing technologies in advanced treatment. This study uses secondary effluent of the East Sewage Treatment Plant as the research object. The effluent of the waste water treatment plant (WWTP) has a low temperature about 10–20 °C. The inner diameter of the filter column is 150 mm, and the height of the column is 2.3 m. The denitrification filter used boring exposure and continuous water to select the advantage bacterium group to form biological membrane attached on the surface of the filter material. This experiment studies the different treatment effect when forming biological membrane using two different packing processes (ceramsite packing and polyethylene polyhedral hollow ring filter packing) in the denitrification filter. During the experiment, TN, NO3−–N, NO2−–N, NH4+–N, CODCr were constantly measured as well as other regular indicators. The above regular indicators show the biological membrane attachment condition during the formation of the biological membrane. To confirm this procedure successfully, the mark was that the CODcr removal rate reached 50% and the NO3−–N removal rate reached 60%. It was shown that the ceramsite packing needed 25 d, and the polyethylene polyhedral hollow ring packing needed 30 d. This experiment indicates that the startup time, membrane growth and removal efficiency of the ceramsite filter are better than the polyethylene polyhedral hollow ring filter.
    12 schema:editor Ne7c2d0a8707244838f228185f87a3d58
    13 schema:genre chapter
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf Nc304942301054c0b8c4ad1169e30f92f
    17 schema:name Startup of Formatting Biological Membrane in Denitrifying Filter at Low Temperature
    18 schema:pagination 275-287
    19 schema:productId N1bf2407610e44af383c5aec603e15415
    20 N8fd92261a289460aaca88c8c4bf953e8
    21 Nf2c35a1391a045c9ada8d7c7bc41e448
    22 schema:publisher Ndd268a7268e440089e121a63359f0d1d
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104010510
    24 https://doi.org/10.1007/978-3-319-61630-8_24
    25 schema:sdDatePublished 2019-04-15T16:56
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher Ndabe6cf5e18a4000a8c54bda2c80038f
    28 schema:url http://link.springer.com/10.1007/978-3-319-61630-8_24
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset chapters
    31 rdf:type schema:Chapter
    32 N04cb87d73d2d49f991da531af47d55e2 schema:familyName Zhang
    33 schema:givenName Yong
    34 rdf:type schema:Person
    35 N1bf2407610e44af383c5aec603e15415 schema:name readcube_id
    36 schema:value 67308aaa74ad5e07f26800c8a0a93dfc3e48d3aeeea75dae6d2f25a658ecd98b
    37 rdf:type schema:PropertyValue
    38 N2e58abd8da6a45ea8200a4cfe65913f6 schema:name Chongqing Monitoring Station, Water Quality Monitoring Network of National Urban Water Supply
    39 rdf:type schema:Organization
    40 N70cab9f6d4a94699a9075f9d5b302249 rdf:first sg:person.010174646046.62
    41 rdf:rest Ndc67758ee9d343d293a6b60872c784e7
    42 N77de69e0a6a44c72a0443a430f1f64ca rdf:first Nc8b29acc9d20455a8a5281927b55c8b6
    43 rdf:rest Nc004dd447c0c4d578e900cf189dbaaf7
    44 N8fd92261a289460aaca88c8c4bf953e8 schema:name dimensions_id
    45 schema:value pub.1104010510
    46 rdf:type schema:PropertyValue
    47 N929bc4f47db641c88ebc69ff3e6e3529 rdf:first N97b792b09374430ab8ce8b093623f2ac
    48 rdf:rest Nc92223be963e42599fcba8c09e84c00b
    49 N97b792b09374430ab8ce8b093623f2ac schema:familyName Lian
    50 schema:givenName Yanqing
    51 rdf:type schema:Person
    52 N9e5ee1dae4a84184b3d27574241c1288 rdf:first sg:person.016674056146.00
    53 rdf:rest Neb479998cba640a3a463e1153f676620
    54 Nb2f65ebae6844188bc793086a97bc06b schema:familyName Dong
    55 schema:givenName Wei
    56 rdf:type schema:Person
    57 Nc004dd447c0c4d578e900cf189dbaaf7 rdf:first sg:person.012365167446.19
    58 rdf:rest rdf:nil
    59 Nc304942301054c0b8c4ad1169e30f92f schema:isbn 978-3-319-61629-2
    60 978-3-319-61630-8
    61 schema:name Sustainable Development of Water Resources and Hydraulic Engineering in China
    62 rdf:type schema:Book
    63 Nc8b29acc9d20455a8a5281927b55c8b6 schema:affiliation https://www.grid.ac/institutes/grid.495321.8
    64 schema:familyName Zhang
    65 schema:givenName Wen
    66 rdf:type schema:Person
    67 Nc92223be963e42599fcba8c09e84c00b rdf:first N04cb87d73d2d49f991da531af47d55e2
    68 rdf:rest rdf:nil
    69 Ndabe6cf5e18a4000a8c54bda2c80038f schema:name Springer Nature - SN SciGraph project
    70 rdf:type schema:Organization
    71 Ndc67758ee9d343d293a6b60872c784e7 rdf:first sg:person.010772226446.31
    72 rdf:rest N77de69e0a6a44c72a0443a430f1f64ca
    73 Ndd268a7268e440089e121a63359f0d1d schema:location Cham
    74 schema:name Springer International Publishing
    75 rdf:type schema:Organisation
    76 Ne7c2d0a8707244838f228185f87a3d58 rdf:first Nb2f65ebae6844188bc793086a97bc06b
    77 rdf:rest N929bc4f47db641c88ebc69ff3e6e3529
    78 Neb479998cba640a3a463e1153f676620 rdf:first sg:person.011755010657.96
    79 rdf:rest N70cab9f6d4a94699a9075f9d5b302249
    80 Nf2c35a1391a045c9ada8d7c7bc41e448 schema:name doi
    81 schema:value 10.1007/978-3-319-61630-8_24
    82 rdf:type schema:PropertyValue
    83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Engineering
    85 rdf:type schema:DefinedTerm
    86 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Chemical Engineering
    88 rdf:type schema:DefinedTerm
    89 sg:person.010174646046.62 schema:affiliation N2e58abd8da6a45ea8200a4cfe65913f6
    90 schema:familyName Wan
    91 schema:givenName Qiaoling
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010174646046.62
    93 rdf:type schema:Person
    94 sg:person.010772226446.31 schema:affiliation https://www.grid.ac/institutes/grid.495321.8
    95 schema:familyName Mao
    96 schema:givenName Shuang
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010772226446.31
    98 rdf:type schema:Person
    99 sg:person.011755010657.96 schema:affiliation https://www.grid.ac/institutes/grid.449903.3
    100 schema:familyName Dou
    101 schema:givenName Yanyan
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755010657.96
    103 rdf:type schema:Person
    104 sg:person.012365167446.19 schema:affiliation https://www.grid.ac/institutes/grid.412028.d
    105 schema:familyName Lin
    106 schema:givenName Jiaqi
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012365167446.19
    108 rdf:type schema:Person
    109 sg:person.016674056146.00 schema:affiliation https://www.grid.ac/institutes/grid.495321.8
    110 schema:familyName Wang
    111 schema:givenName Long
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016674056146.00
    113 rdf:type schema:Person
    114 sg:pub.10.1007/978-3-642-76040-2_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047926878
    115 https://doi.org/10.1007/978-3-642-76040-2_26
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1023/a:1005242600186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043465775
    118 https://doi.org/10.1023/a:1005242600186
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.biortech.2013.07.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041951179
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.watres.2013.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026680299
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/s0043-1354(97)00095-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022255824
    125 rdf:type schema:CreativeWork
    126 https://www.grid.ac/institutes/grid.412028.d schema:alternateName Hebei University of Engineering
    127 schema:name Hebei University of Engineering
    128 rdf:type schema:Organization
    129 https://www.grid.ac/institutes/grid.449903.3 schema:alternateName Zhongyuan University of Technology
    130 schema:name Zhongyuan University of Technology
    131 rdf:type schema:Organization
    132 https://www.grid.ac/institutes/grid.495321.8 schema:alternateName Chongqing Metrology Quality Inspection and Research Institute
    133 schema:name Chongqing Academy of Metrology and Quality Inspection
    134 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...