Comparison of Different ACO Start Strategies Based on InterCriteria Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-06-28

AUTHORS

Olympia Roeva , Stefka Fidanova , Marcin Paprzycki

ABSTRACT

Inthecombinatorial optimization, the goal is to find the optimal object from a finite set of objects. From computational point of view the combinatorial optimization problems are hard to be solved. Therefore on this kind of problems usually is applied some metaheuristics. One of the most successful techniques for a lot of problem classes is metaheuristic algorithm Ant Colony Optimization (ACO). Some start strategies can be applied on ACO algorithms to improve the algorithm performance. We propose several start strategies when an ant chose first node, from which to start to create a solution. Some of the strategies are base on forbidding some of the possible starting nodes, for one or more iterations, because we suppose that no good solution starting from these nodes. The aim of other strategies are to increase the probability to start from nodes with expectations that there are good solutions starting from these nodes. We can apply any of the proposed strategy separately or to combine them. In this investigation InterCriteria Analysis (ICrA) is applied on ACO algorithms with the suggested different start strategies. On the basis of ICrA the ACO performance is examined and analysed. More... »

PAGES

53-72

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-59861-1_4

DOI

http://dx.doi.org/10.1007/978-3-319-59861-1_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086304326


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.493309.4", 
          "name": [
            "Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roeva", 
        "givenName": "Olympia", 
        "id": "sg:person.015745057111.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Information and Communication Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.410344.6", 
          "name": [
            "Institute of Information and Communication Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "id": "sg:person.011173106320.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "System Research Institute, Polish Academy of Sciences Warsaw and Management Academy, Warsaw, Poland", 
          "id": "http://www.grid.ac/institutes/grid.466252.1", 
          "name": [
            "System Research Institute, Polish Academy of Sciences Warsaw and Management Academy, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paprzycki", 
        "givenName": "Marcin", 
        "id": "sg:person.014761523751.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014761523751.31"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-06-28", 
    "datePublishedReg": "2017-06-28", 
    "description": "Inthecombinatorial optimization, the goal is to find the optimal object from a finite set of objects. From computational point of view the combinatorial optimization problems are hard to be solved. Therefore on this kind of problems usually is applied some metaheuristics. One of the most successful techniques for a lot of problem classes is metaheuristic algorithm Ant Colony Optimization (ACO). Some start strategies can be applied on ACO algorithms to improve the algorithm performance. We propose several start strategies when an ant chose first node, from which to start to create a solution. Some of the strategies are base on forbidding some of the possible starting nodes, for one or more iterations, because we suppose that no good solution starting from these nodes. The aim of other strategies are to increase the probability to start from nodes with expectations that there are good solutions starting from these nodes. We can apply any of the proposed strategy separately or to combine them. In this investigation InterCriteria Analysis (ICrA) is applied on ACO algorithms with the suggested different start strategies. On the basis of ICrA the ACO performance is examined and analysed.", 
    "editor": [
      {
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-59861-1_4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-59860-4", 
        "978-3-319-59861-1"
      ], 
      "name": "Recent Advances in Computational Optimization", 
      "type": "Book"
    }, 
    "keywords": [
      "algorithm Ant Colony Optimization", 
      "ACO algorithm", 
      "combinatorial optimization problems", 
      "InterCriteria Analysis", 
      "Ant Colony Optimization", 
      "best solution", 
      "optimization problem", 
      "start strategy", 
      "kind of problem", 
      "problem class", 
      "computational point", 
      "finite set", 
      "colony optimization", 
      "more iterations", 
      "optimal object", 
      "algorithm performance", 
      "ACO performance", 
      "optimization", 
      "nodes", 
      "solution", 
      "algorithm", 
      "first node", 
      "problem", 
      "metaheuristics", 
      "iteration", 
      "successful technique", 
      "objects", 
      "probability", 
      "class", 
      "performance", 
      "set", 
      "point", 
      "strategies", 
      "technique", 
      "goal", 
      "analysis", 
      "kind", 
      "comparison", 
      "view", 
      "ants", 
      "basis", 
      "expectations", 
      "aim"
    ], 
    "name": "Comparison of Different ACO Start Strategies Based on InterCriteria Analysis", 
    "pagination": "53-72", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086304326"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-59861-1_4"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-59861-1_4", 
      "https://app.dimensions.ai/details/publication/pub.1086304326"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_223.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-59861-1_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-59861-1_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-59861-1_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-59861-1_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-59861-1_4'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      23 PREDICATES      70 URIs      61 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-59861-1_4 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 anzsrc-for:08
4 anzsrc-for:0802
5 schema:author N7604a54dffc14db59a9c48e3763ea669
6 schema:datePublished 2017-06-28
7 schema:datePublishedReg 2017-06-28
8 schema:description Inthecombinatorial optimization, the goal is to find the optimal object from a finite set of objects. From computational point of view the combinatorial optimization problems are hard to be solved. Therefore on this kind of problems usually is applied some metaheuristics. One of the most successful techniques for a lot of problem classes is metaheuristic algorithm Ant Colony Optimization (ACO). Some start strategies can be applied on ACO algorithms to improve the algorithm performance. We propose several start strategies when an ant chose first node, from which to start to create a solution. Some of the strategies are base on forbidding some of the possible starting nodes, for one or more iterations, because we suppose that no good solution starting from these nodes. The aim of other strategies are to increase the probability to start from nodes with expectations that there are good solutions starting from these nodes. We can apply any of the proposed strategy separately or to combine them. In this investigation InterCriteria Analysis (ICrA) is applied on ACO algorithms with the suggested different start strategies. On the basis of ICrA the ACO performance is examined and analysed.
9 schema:editor N754e7204db6b47e9b6344cf901330a49
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N880b5c22633c46b99dbd220d149999c4
14 schema:keywords ACO algorithm
15 ACO performance
16 Ant Colony Optimization
17 InterCriteria Analysis
18 aim
19 algorithm
20 algorithm Ant Colony Optimization
21 algorithm performance
22 analysis
23 ants
24 basis
25 best solution
26 class
27 colony optimization
28 combinatorial optimization problems
29 comparison
30 computational point
31 expectations
32 finite set
33 first node
34 goal
35 iteration
36 kind
37 kind of problem
38 metaheuristics
39 more iterations
40 nodes
41 objects
42 optimal object
43 optimization
44 optimization problem
45 performance
46 point
47 probability
48 problem
49 problem class
50 set
51 solution
52 start strategy
53 strategies
54 successful technique
55 technique
56 view
57 schema:name Comparison of Different ACO Start Strategies Based on InterCriteria Analysis
58 schema:pagination 53-72
59 schema:productId N4d10ba2a675f46188ebe6358b64b8e14
60 Nd3690ff7e7374da884359bcf7e06aa56
61 schema:publisher Ncd3a7d0836e148e3abb1a71e96e7bdfa
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086304326
63 https://doi.org/10.1007/978-3-319-59861-1_4
64 schema:sdDatePublished 2022-05-10T10:42
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N0e39e5848a1a44ed9c369a4fde023917
67 schema:url https://doi.org/10.1007/978-3-319-59861-1_4
68 sgo:license sg:explorer/license/
69 sgo:sdDataset chapters
70 rdf:type schema:Chapter
71 N0e39e5848a1a44ed9c369a4fde023917 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N4c5950cea11143fdb73b6b1baf3fee7b schema:familyName Fidanova
74 schema:givenName Stefka
75 rdf:type schema:Person
76 N4d10ba2a675f46188ebe6358b64b8e14 schema:name dimensions_id
77 schema:value pub.1086304326
78 rdf:type schema:PropertyValue
79 N4f7c0d97b94b4e5886bef0d96a047e80 rdf:first sg:person.014761523751.31
80 rdf:rest rdf:nil
81 N754e7204db6b47e9b6344cf901330a49 rdf:first N4c5950cea11143fdb73b6b1baf3fee7b
82 rdf:rest rdf:nil
83 N7604a54dffc14db59a9c48e3763ea669 rdf:first sg:person.015745057111.08
84 rdf:rest Nf53399d3b3204ba78c761448b00dbd31
85 N880b5c22633c46b99dbd220d149999c4 schema:isbn 978-3-319-59860-4
86 978-3-319-59861-1
87 schema:name Recent Advances in Computational Optimization
88 rdf:type schema:Book
89 Ncd3a7d0836e148e3abb1a71e96e7bdfa schema:name Springer Nature
90 rdf:type schema:Organisation
91 Nd3690ff7e7374da884359bcf7e06aa56 schema:name doi
92 schema:value 10.1007/978-3-319-59861-1_4
93 rdf:type schema:PropertyValue
94 Nf53399d3b3204ba78c761448b00dbd31 rdf:first sg:person.011173106320.18
95 rdf:rest N4f7c0d97b94b4e5886bef0d96a047e80
96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
97 schema:name Mathematical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
100 schema:name Numerical and Computational Mathematics
101 rdf:type schema:DefinedTerm
102 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
103 schema:name Information and Computing Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
106 schema:name Computation Theory and Mathematics
107 rdf:type schema:DefinedTerm
108 sg:person.011173106320.18 schema:affiliation grid-institutes:grid.410344.6
109 schema:familyName Fidanova
110 schema:givenName Stefka
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18
112 rdf:type schema:Person
113 sg:person.014761523751.31 schema:affiliation grid-institutes:grid.466252.1
114 schema:familyName Paprzycki
115 schema:givenName Marcin
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014761523751.31
117 rdf:type schema:Person
118 sg:person.015745057111.08 schema:affiliation grid-institutes:grid.493309.4
119 schema:familyName Roeva
120 schema:givenName Olympia
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08
122 rdf:type schema:Person
123 grid-institutes:grid.410344.6 schema:alternateName Institute of Information and Communication Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria
124 schema:name Institute of Information and Communication Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria
125 rdf:type schema:Organization
126 grid-institutes:grid.466252.1 schema:alternateName System Research Institute, Polish Academy of Sciences Warsaw and Management Academy, Warsaw, Poland
127 schema:name System Research Institute, Polish Academy of Sciences Warsaw and Management Academy, Warsaw, Poland
128 rdf:type schema:Organization
129 grid-institutes:grid.493309.4 schema:alternateName Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
130 schema:name Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...