Ontology type: schema:Chapter
2017
AUTHORSJoaquim de Moura , Jorge Novo , José Rouco , M. G. Penedo , Marcos Ortega
ABSTRACTThe eye is a non-invasive window where clinicians can observe and study in vivo the retinal vasculature, allowing the early detection of different relevant pathologies. In this paper, we present a complete methodology for the automatic vascular detection in retinal OCT images. To achieve this, we analyse the intensity profiles between representative layers of the retina, layers that are previously segmented. Then, we propose the use of two threshold-based strategies for vessel detection, a fixed and an adaptive approach. Both methods have been tested and validated with 128 OCT images, that include 560 vessels that were labelled by an ophthalmologist. The approaches provided satisfactory results, facilitating the doctors’ work and allowing better analysis and treatment of vascular diseases. More... »
PAGES3-10
Biomedical Applications Based on Natural and Artificial Computing
ISBN
978-3-319-59772-0
978-3-319-59773-7
http://scigraph.springernature.com/pub.10.1007/978-3-319-59773-7_1
DOIhttp://dx.doi.org/10.1007/978-3-319-59773-7_1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1086391565
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1113",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Ophthalmology and Optometry",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of A Coru\u00f1a",
"id": "https://www.grid.ac/institutes/grid.8073.c",
"name": [
"University of A Coru\u00f1a"
],
"type": "Organization"
},
"familyName": "de Moura",
"givenName": "Joaquim",
"id": "sg:person.010541701153.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010541701153.05"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of A Coru\u00f1a",
"id": "https://www.grid.ac/institutes/grid.8073.c",
"name": [
"University of A Coru\u00f1a"
],
"type": "Organization"
},
"familyName": "Novo",
"givenName": "Jorge",
"id": "sg:person.01263222603.88",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263222603.88"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of A Coru\u00f1a",
"id": "https://www.grid.ac/institutes/grid.8073.c",
"name": [
"University of A Coru\u00f1a"
],
"type": "Organization"
},
"familyName": "Rouco",
"givenName": "Jos\u00e9",
"id": "sg:person.01216521614.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216521614.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of A Coru\u00f1a",
"id": "https://www.grid.ac/institutes/grid.8073.c",
"name": [
"University of A Coru\u00f1a"
],
"type": "Organization"
},
"familyName": "Penedo",
"givenName": "M. G.",
"id": "sg:person.01331336003.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331336003.94"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of A Coru\u00f1a",
"id": "https://www.grid.ac/institutes/grid.8073.c",
"name": [
"University of A Coru\u00f1a"
],
"type": "Organization"
},
"familyName": "Ortega",
"givenName": "Marcos",
"id": "sg:person.0665112667.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665112667.10"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1117/12.772680",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009818845"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1056/nejmra032865",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011668686"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-44636-3_3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039800035",
"https://doi.org/10.1007/978-3-319-44636-3_3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.compmedimag.2014.02.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043387513"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/01.atv.20.6.1644",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048230887"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11892-009-0043-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051664627",
"https://doi.org/10.1007/s11892-009-0043-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11892-009-0043-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051664627",
"https://doi.org/10.1007/s11892-009-0043-4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/72.363449",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061218546"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1957169",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062514972"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/iembs.1998.746160",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093710250"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cgiv.2016.69",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093985687"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icpr.2008.4761762",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094018356"
],
"type": "CreativeWork"
}
],
"datePublished": "2017",
"datePublishedReg": "2017-01-01",
"description": "The eye is a non-invasive window where clinicians can observe and study in vivo the retinal vasculature, allowing the early detection of different relevant pathologies. In this paper, we present a complete methodology for the automatic vascular detection in retinal OCT images. To achieve this, we analyse the intensity profiles between representative layers of the retina, layers that are previously segmented. Then, we propose the use of two threshold-based strategies for vessel detection, a fixed and an adaptive approach. Both methods have been tested and validated with 128 OCT images, that include 560 vessels that were labelled by an ophthalmologist. The approaches provided satisfactory results, facilitating the doctors\u2019 work and allowing better analysis and treatment of vascular diseases.",
"editor": [
{
"familyName": "Ferr\u00e1ndez Vicente",
"givenName": "Jos\u00e9 Manuel",
"type": "Person"
},
{
"familyName": "\u00c1lvarez-S\u00e1nchez",
"givenName": "Jos\u00e9 Ram\u00f3n",
"type": "Person"
},
{
"familyName": "de la Paz L\u00f3pez",
"givenName": "F\u00e9lix",
"type": "Person"
},
{
"familyName": "Toledo Moreo",
"givenName": "Javier",
"type": "Person"
},
{
"familyName": "Adeli",
"givenName": "Hojjat",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-59773-7_1",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.3737858",
"type": "MonetaryGrant"
}
],
"isPartOf": {
"isbn": [
"978-3-319-59772-0",
"978-3-319-59773-7"
],
"name": "Biomedical Applications Based on Natural and Artificial Computing",
"type": "Book"
},
"name": "Automatic Detection of Blood Vessels in Retinal OCT Images",
"pagination": "3-10",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-59773-7_1"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"52a8642bf472a67b380f47aa5121f05a8b28ada02e4de359ab25741ec0a8e801"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1086391565"
]
}
],
"publisher": {
"location": "Cham",
"name": "Springer International Publishing",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-59773-7_1",
"https://app.dimensions.ai/details/publication/pub.1086391565"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T12:13",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000600.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-319-59773-7_1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-59773-7_1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-59773-7_1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-59773-7_1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-59773-7_1'
This table displays all metadata directly associated to this object as RDF triples.
150 TRIPLES
23 PREDICATES
38 URIs
20 LITERALS
8 BLANK NODES