Emotion Assessment Based on Functional Connectivity Variability and Relevance Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

C. Torres-Valencia , A. Alvarez-Meza , A. Orozco-Gutierrez

ABSTRACT

The evaluation of emotional states has relevance in the development of systems that can automatically interact with human beings. The use of brain mapping techniques, e.g., electroencephalogram (EEG), improves the robustness of the emotion assessment methodologies in comparison to those schemes that use only audiovisual information. However, the high amount of data derived from EEG and the complex spatiotemporal relationships among channels impose several signal processing issues. Recently, functional connectivity (FC) approaches have emerged as an alternative to estimate brain connectivity patterns from EEG. Thereby, FC allows depicting the cognitive processes inside the human brain to support further brain activity discrimination stages. In this work, we propose an FC-based strategy to classify emotional states from EEG data. Our approach comprises a variability-based representation from three different FC measures, i.e., correlation, coherence, and mutual information, and a supervised kernel-based scheme to quantify the relevance of each measure. Thus, our proposal codes the inter-subject brain activity variability regarding FC representations. Obtained results on a public dataset show that the introduced strategy is competitive in comparison to state-of-the-art methods classifying arousal and valence emotional dimensional spaces. More... »

PAGES

353-362

Book

TITLE

Natural and Artificial Computation for Biomedicine and Neuroscience

ISBN

978-3-319-59739-3
978-3-319-59740-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-59740-9_35

DOI

http://dx.doi.org/10.1007/978-3-319-59740-9_35

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086391548


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technological University of Pereira", 
          "id": "https://www.grid.ac/institutes/grid.412256.6", 
          "name": [
            "Universidad Tecnol\u00f3gica de Pereira"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torres-Valencia", 
        "givenName": "C.", 
        "id": "sg:person.010435251713.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010435251713.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technological University of Pereira", 
          "id": "https://www.grid.ac/institutes/grid.412256.6", 
          "name": [
            "Universidad Tecnol\u00f3gica de Pereira"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alvarez-Meza", 
        "givenName": "A.", 
        "id": "sg:person.01261456124.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261456124.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technological University of Pereira", 
          "id": "https://www.grid.ac/institutes/grid.412256.6", 
          "name": [
            "Universidad Tecnol\u00f3gica de Pereira"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orozco-Gutierrez", 
        "givenName": "A.", 
        "id": "sg:person.012201216001.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012201216001.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12193-016-0222-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015594740", 
          "https://doi.org/10.1007/s12193-016-0222-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10978-7_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018048359", 
          "https://doi.org/10.1007/978-3-319-10978-7_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12021-013-9186-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032217674", 
          "https://doi.org/10.1007/s12021-013-9186-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fncom.2016.00055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038544549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.09.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040366465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2014.03.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046111502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/brain.2011.0008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047424808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-affc.2011.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061446966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-affc.2011.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061446989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijaacs.2013.050687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067429596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2016.7590800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084497943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2016.7591731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084498797"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "The evaluation of emotional states has relevance in the development of systems that can automatically interact with human beings. The use of brain mapping techniques, e.g., electroencephalogram (EEG), improves the robustness of the emotion assessment methodologies in comparison to those schemes that use only audiovisual information. However, the high amount of data derived from EEG and the complex spatiotemporal relationships among channels impose several signal processing issues. Recently, functional connectivity (FC) approaches have emerged as an alternative to estimate brain connectivity patterns from EEG. Thereby, FC allows depicting the cognitive processes inside the human brain to support further brain activity discrimination stages. In this work, we propose an FC-based strategy to classify emotional states from EEG data. Our approach comprises a variability-based representation from three different FC measures, i.e., correlation, coherence, and mutual information, and a supervised kernel-based scheme to quantify the relevance of each measure. Thus, our proposal codes the inter-subject brain activity variability regarding FC representations. Obtained results on a public dataset show that the introduced strategy is competitive in comparison to state-of-the-art methods classifying arousal and valence emotional dimensional spaces.", 
    "editor": [
      {
        "familyName": "Ferr\u00e1ndez Vicente", 
        "givenName": "Jos\u00e9 Manuel", 
        "type": "Person"
      }, 
      {
        "familyName": "\u00c1lvarez-S\u00e1nchez", 
        "givenName": "Jos\u00e9 Ram\u00f3n", 
        "type": "Person"
      }, 
      {
        "familyName": "de la Paz L\u00f3pez", 
        "givenName": "F\u00e9lix", 
        "type": "Person"
      }, 
      {
        "familyName": "Toledo Moreo", 
        "givenName": "Javier", 
        "type": "Person"
      }, 
      {
        "familyName": "Adeli", 
        "givenName": "Hojjat", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-59740-9_35", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-59739-3", 
        "978-3-319-59740-9"
      ], 
      "name": "Natural and Artificial Computation for Biomedicine and Neuroscience", 
      "type": "Book"
    }, 
    "name": "Emotion Assessment Based on Functional Connectivity Variability and Relevance Analysis", 
    "pagination": "353-362", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-59740-9_35"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "13ccb212c0732a54eb7d183632a426e367ca2f8caed7cb6be5fe7b3cfaafad49"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086391548"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-59740-9_35", 
      "https://app.dimensions.ai/details/publication/pub.1086391548"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000600.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-59740-9_35"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-59740-9_35'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-59740-9_35'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-59740-9_35'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-59740-9_35'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-59740-9_35 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Nf175ee99173c421abebb7a76f0ef0ef1
4 schema:citation sg:pub.10.1007/978-3-319-10978-7_8
5 sg:pub.10.1007/s12021-013-9186-1
6 sg:pub.10.1007/s12193-016-0222-y
7 https://doi.org/10.1016/j.eswa.2014.03.050
8 https://doi.org/10.1016/j.neucom.2015.09.085
9 https://doi.org/10.1089/brain.2011.0008
10 https://doi.org/10.1109/embc.2016.7590800
11 https://doi.org/10.1109/embc.2016.7591731
12 https://doi.org/10.1109/t-affc.2011.15
13 https://doi.org/10.1109/t-affc.2011.37
14 https://doi.org/10.1504/ijaacs.2013.050687
15 https://doi.org/10.3389/fncom.2016.00055
16 schema:datePublished 2017
17 schema:datePublishedReg 2017-01-01
18 schema:description The evaluation of emotional states has relevance in the development of systems that can automatically interact with human beings. The use of brain mapping techniques, e.g., electroencephalogram (EEG), improves the robustness of the emotion assessment methodologies in comparison to those schemes that use only audiovisual information. However, the high amount of data derived from EEG and the complex spatiotemporal relationships among channels impose several signal processing issues. Recently, functional connectivity (FC) approaches have emerged as an alternative to estimate brain connectivity patterns from EEG. Thereby, FC allows depicting the cognitive processes inside the human brain to support further brain activity discrimination stages. In this work, we propose an FC-based strategy to classify emotional states from EEG data. Our approach comprises a variability-based representation from three different FC measures, i.e., correlation, coherence, and mutual information, and a supervised kernel-based scheme to quantify the relevance of each measure. Thus, our proposal codes the inter-subject brain activity variability regarding FC representations. Obtained results on a public dataset show that the introduced strategy is competitive in comparison to state-of-the-art methods classifying arousal and valence emotional dimensional spaces.
19 schema:editor Nd1382403bcb04e82a879860da3759f41
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N139bb4db950445ccaf748e9156ebcaae
24 schema:name Emotion Assessment Based on Functional Connectivity Variability and Relevance Analysis
25 schema:pagination 353-362
26 schema:productId N26e91721f9f1456b9ae770ca8e06c4f7
27 N549835fa702d4f52b32b22ccb2c8c79e
28 N7eebeab3c314437a83e1cd117de68387
29 schema:publisher Nf40ea566b9da418fbb04d2865d4a819a
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086391548
31 https://doi.org/10.1007/978-3-319-59740-9_35
32 schema:sdDatePublished 2019-04-15T15:03
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Nf9029959d39a46e19632e6f8d7d5dadc
35 schema:url http://link.springer.com/10.1007/978-3-319-59740-9_35
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N135b4e6c9cde4727b74e8e5e1ae1cef2 rdf:first N8e1a823d5be443b9b528a6338eefe162
40 rdf:rest rdf:nil
41 N139bb4db950445ccaf748e9156ebcaae schema:isbn 978-3-319-59739-3
42 978-3-319-59740-9
43 schema:name Natural and Artificial Computation for Biomedicine and Neuroscience
44 rdf:type schema:Book
45 N1637af6c630d4efda9836deb904876c5 schema:familyName de la Paz López
46 schema:givenName Félix
47 rdf:type schema:Person
48 N26e91721f9f1456b9ae770ca8e06c4f7 schema:name readcube_id
49 schema:value 13ccb212c0732a54eb7d183632a426e367ca2f8caed7cb6be5fe7b3cfaafad49
50 rdf:type schema:PropertyValue
51 N3b6b1af270c94537848c367d925e32e8 rdf:first N1637af6c630d4efda9836deb904876c5
52 rdf:rest N664cbb9f79784ec397c23a3581fc80f9
53 N549835fa702d4f52b32b22ccb2c8c79e schema:name dimensions_id
54 schema:value pub.1086391548
55 rdf:type schema:PropertyValue
56 N59cd82c7c50c44d79183bd7e205bca3a schema:familyName Toledo Moreo
57 schema:givenName Javier
58 rdf:type schema:Person
59 N664cbb9f79784ec397c23a3581fc80f9 rdf:first N59cd82c7c50c44d79183bd7e205bca3a
60 rdf:rest N135b4e6c9cde4727b74e8e5e1ae1cef2
61 N7e5cc1cc808946d4a24d58cf1406800a rdf:first sg:person.012201216001.24
62 rdf:rest rdf:nil
63 N7eebeab3c314437a83e1cd117de68387 schema:name doi
64 schema:value 10.1007/978-3-319-59740-9_35
65 rdf:type schema:PropertyValue
66 N8e1a823d5be443b9b528a6338eefe162 schema:familyName Adeli
67 schema:givenName Hojjat
68 rdf:type schema:Person
69 N93d083d4eb1849f2af16d6204754f4d3 rdf:first Nb6267df6bb7949a5ad3753063f5ea67b
70 rdf:rest N3b6b1af270c94537848c367d925e32e8
71 Nb6267df6bb7949a5ad3753063f5ea67b schema:familyName Álvarez-Sánchez
72 schema:givenName José Ramón
73 rdf:type schema:Person
74 Nd1382403bcb04e82a879860da3759f41 rdf:first Nda1fdc8cd1c341e19f5167ebb338438b
75 rdf:rest N93d083d4eb1849f2af16d6204754f4d3
76 Nda1fdc8cd1c341e19f5167ebb338438b schema:familyName Ferrández Vicente
77 schema:givenName José Manuel
78 rdf:type schema:Person
79 Needb2d5d7a254c74b35ca441f212a21d rdf:first sg:person.01261456124.28
80 rdf:rest N7e5cc1cc808946d4a24d58cf1406800a
81 Nf175ee99173c421abebb7a76f0ef0ef1 rdf:first sg:person.010435251713.18
82 rdf:rest Needb2d5d7a254c74b35ca441f212a21d
83 Nf40ea566b9da418fbb04d2865d4a819a schema:location Cham
84 schema:name Springer International Publishing
85 rdf:type schema:Organisation
86 Nf9029959d39a46e19632e6f8d7d5dadc schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
89 schema:name Psychology and Cognitive Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
92 schema:name Psychology
93 rdf:type schema:DefinedTerm
94 sg:person.010435251713.18 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
95 schema:familyName Torres-Valencia
96 schema:givenName C.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010435251713.18
98 rdf:type schema:Person
99 sg:person.012201216001.24 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
100 schema:familyName Orozco-Gutierrez
101 schema:givenName A.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012201216001.24
103 rdf:type schema:Person
104 sg:person.01261456124.28 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
105 schema:familyName Alvarez-Meza
106 schema:givenName A.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261456124.28
108 rdf:type schema:Person
109 sg:pub.10.1007/978-3-319-10978-7_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018048359
110 https://doi.org/10.1007/978-3-319-10978-7_8
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s12021-013-9186-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032217674
113 https://doi.org/10.1007/s12021-013-9186-1
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s12193-016-0222-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1015594740
116 https://doi.org/10.1007/s12193-016-0222-y
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.eswa.2014.03.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046111502
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.neucom.2015.09.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040366465
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1089/brain.2011.0008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047424808
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/embc.2016.7590800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084497943
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/embc.2016.7591731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084498797
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/t-affc.2011.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446966
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/t-affc.2011.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446989
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1504/ijaacs.2013.050687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067429596
133 rdf:type schema:CreativeWork
134 https://doi.org/10.3389/fncom.2016.00055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038544549
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.412256.6 schema:alternateName Technological University of Pereira
137 schema:name Universidad Tecnológica de Pereira
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...