Efficient Sketch Recognition Based on Shape Features and Multidimensional Indexing View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-05-07

AUTHORS

Simone Buoncompagni , Annalisa Franco , Dario Maio

ABSTRACT

Face sketch recognition on real forensic mug shot photo galleries is a complex task since a large amount of images needs to be matched in few seconds to produce a useful outcome. Several effective solutions for sketch-based subject identification have been recently proposed, but the cost of linear search makes them not scalable when large databases have to be scanned. In this work we propose an approach which combines the use of efficient shape features for sketch-photo matching with a suitable indexing structure based on dimensionality reduction. The proposed method provides a preliminary set of candidate photos to be used as input for the final identification based on state-of-the-art techniques, offering scalability and time efficiency without noticeably compromising recognition accuracy, as confirmed by the experimental results. More... »

PAGES

159-169

Book

TITLE

Proceedings of the 10th International Conference on Computer Recognition Systems CORES 2017

ISBN

978-3-319-59161-2
978-3-319-59162-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-59162-9_17

DOI

http://dx.doi.org/10.1007/978-3-319-59162-9_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085200764


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "C.d.L. Ingegneria e Scienze Informatiche, University of Bologna, Via Sacchi, 3, Cesena (FC), Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "C.d.L. Ingegneria e Scienze Informatiche, University of Bologna, Via Sacchi, 3, Cesena (FC), Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buoncompagni", 
        "givenName": "Simone", 
        "id": "sg:person.010622026625.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010622026625.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "C.d.L. Ingegneria e Scienze Informatiche, University of Bologna, Via Sacchi, 3, Cesena (FC), Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "C.d.L. Ingegneria e Scienze Informatiche, University of Bologna, Via Sacchi, 3, Cesena (FC), Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Franco", 
        "givenName": "Annalisa", 
        "id": "sg:person.011002501427.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011002501427.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "C.d.L. Ingegneria e Scienze Informatiche, University of Bologna, Via Sacchi, 3, Cesena (FC), Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "C.d.L. Ingegneria e Scienze Informatiche, University of Bologna, Via Sacchi, 3, Cesena (FC), Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maio", 
        "givenName": "Dario", 
        "id": "sg:person.013075040365.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075040365.65"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-05-07", 
    "datePublishedReg": "2017-05-07", 
    "description": "Face sketch recognition on real forensic mug shot photo galleries is a complex task since a large amount of images needs to be matched in few seconds to produce a useful outcome. Several effective solutions for sketch-based subject identification have been recently proposed, but the cost of linear search makes them not scalable when large databases have to be scanned. In this work we propose an approach which combines the use of efficient shape features for sketch-photo matching with a suitable indexing structure based on dimensionality reduction. The proposed method provides a preliminary set of candidate photos to be used as input for the final identification based on state-of-the-art techniques, offering scalability and time efficiency without noticeably compromising recognition accuracy, as confirmed by the experimental results.", 
    "editor": [
      {
        "familyName": "Kurzynski", 
        "givenName": "Marek", 
        "type": "Person"
      }, 
      {
        "familyName": "Wozniak", 
        "givenName": "Michal", 
        "type": "Person"
      }, 
      {
        "familyName": "Burduk", 
        "givenName": "Robert", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-59162-9_17", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-59161-2", 
        "978-3-319-59162-9"
      ], 
      "name": "Proceedings of the 10th International Conference on Computer Recognition Systems CORES 2017", 
      "type": "Book"
    }, 
    "keywords": [
      "sketch recognition", 
      "shape features", 
      "multidimensional indexing", 
      "indexing structure", 
      "recognition accuracy", 
      "linear search", 
      "photo gallery", 
      "art techniques", 
      "candidate photos", 
      "large database", 
      "dimensionality reduction", 
      "complex task", 
      "time efficiency", 
      "effective solution", 
      "subject identification", 
      "experimental results", 
      "preliminary set", 
      "large amount", 
      "recognition", 
      "scalability", 
      "indexing", 
      "task", 
      "matching", 
      "features", 
      "images", 
      "accuracy", 
      "useful outcomes", 
      "database", 
      "set", 
      "photos", 
      "final identification", 
      "search", 
      "input", 
      "cost", 
      "technique", 
      "efficiency", 
      "seconds", 
      "solution", 
      "galleries", 
      "work", 
      "identification", 
      "method", 
      "use", 
      "amount", 
      "state", 
      "results", 
      "structure", 
      "reduction", 
      "outcomes", 
      "approach"
    ], 
    "name": "Efficient Sketch Recognition Based on Shape Features and Multidimensional Indexing", 
    "pagination": "159-169", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085200764"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-59162-9_17"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-59162-9_17", 
      "https://app.dimensions.ai/details/publication/pub.1085200764"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_328.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-59162-9_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-59162-9_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-59162-9_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-59162-9_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-59162-9_17'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      22 PREDICATES      74 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-59162-9_17 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6a9a920b71254594a061d5ac277c4e13
4 schema:datePublished 2017-05-07
5 schema:datePublishedReg 2017-05-07
6 schema:description Face sketch recognition on real forensic mug shot photo galleries is a complex task since a large amount of images needs to be matched in few seconds to produce a useful outcome. Several effective solutions for sketch-based subject identification have been recently proposed, but the cost of linear search makes them not scalable when large databases have to be scanned. In this work we propose an approach which combines the use of efficient shape features for sketch-photo matching with a suitable indexing structure based on dimensionality reduction. The proposed method provides a preliminary set of candidate photos to be used as input for the final identification based on state-of-the-art techniques, offering scalability and time efficiency without noticeably compromising recognition accuracy, as confirmed by the experimental results.
7 schema:editor Nf9ea4deda1424505b45c79d2ab3b7ceb
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N57489c97368648219e3d74e4e95b1eb3
11 schema:keywords accuracy
12 amount
13 approach
14 art techniques
15 candidate photos
16 complex task
17 cost
18 database
19 dimensionality reduction
20 effective solution
21 efficiency
22 experimental results
23 features
24 final identification
25 galleries
26 identification
27 images
28 indexing
29 indexing structure
30 input
31 large amount
32 large database
33 linear search
34 matching
35 method
36 multidimensional indexing
37 outcomes
38 photo gallery
39 photos
40 preliminary set
41 recognition
42 recognition accuracy
43 reduction
44 results
45 scalability
46 search
47 seconds
48 set
49 shape features
50 sketch recognition
51 solution
52 state
53 structure
54 subject identification
55 task
56 technique
57 time efficiency
58 use
59 useful outcomes
60 work
61 schema:name Efficient Sketch Recognition Based on Shape Features and Multidimensional Indexing
62 schema:pagination 159-169
63 schema:productId Na31aee69c8954915a88c702c2e0e4f23
64 Na5497a44923746758895d0ee03699170
65 schema:publisher Nbae5d5712ca24ea894bd01033a9469a8
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085200764
67 https://doi.org/10.1007/978-3-319-59162-9_17
68 schema:sdDatePublished 2022-12-01T06:51
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N6ebc04035701406da8ec2c2f6319284b
71 schema:url https://doi.org/10.1007/978-3-319-59162-9_17
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N4464870d0ed14312854d8e1be68f32e7 schema:familyName Kurzynski
76 schema:givenName Marek
77 rdf:type schema:Person
78 N57489c97368648219e3d74e4e95b1eb3 schema:isbn 978-3-319-59161-2
79 978-3-319-59162-9
80 schema:name Proceedings of the 10th International Conference on Computer Recognition Systems CORES 2017
81 rdf:type schema:Book
82 N6301a916fa4246b3a1bbab124a789f26 rdf:first sg:person.011002501427.92
83 rdf:rest Na81565a8280e4d5c8928bfcfabc81c88
84 N6940d37199024b5cacf1dd6f67a8d5d7 schema:familyName Wozniak
85 schema:givenName Michal
86 rdf:type schema:Person
87 N6a9a920b71254594a061d5ac277c4e13 rdf:first sg:person.010622026625.92
88 rdf:rest N6301a916fa4246b3a1bbab124a789f26
89 N6ebc04035701406da8ec2c2f6319284b schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N9223683ffe784796bcce4d076a77ed9e rdf:first Ne4a2b88067994c9eb7d649ee9b1cf8f1
92 rdf:rest rdf:nil
93 Na31aee69c8954915a88c702c2e0e4f23 schema:name doi
94 schema:value 10.1007/978-3-319-59162-9_17
95 rdf:type schema:PropertyValue
96 Na5497a44923746758895d0ee03699170 schema:name dimensions_id
97 schema:value pub.1085200764
98 rdf:type schema:PropertyValue
99 Na81565a8280e4d5c8928bfcfabc81c88 rdf:first sg:person.013075040365.65
100 rdf:rest rdf:nil
101 Nbae5d5712ca24ea894bd01033a9469a8 schema:name Springer Nature
102 rdf:type schema:Organisation
103 Ne4a2b88067994c9eb7d649ee9b1cf8f1 schema:familyName Burduk
104 schema:givenName Robert
105 rdf:type schema:Person
106 Ne812c18346a5427494db56238f6932f0 rdf:first N6940d37199024b5cacf1dd6f67a8d5d7
107 rdf:rest N9223683ffe784796bcce4d076a77ed9e
108 Nf9ea4deda1424505b45c79d2ab3b7ceb rdf:first N4464870d0ed14312854d8e1be68f32e7
109 rdf:rest Ne812c18346a5427494db56238f6932f0
110 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
111 schema:name Information and Computing Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
114 schema:name Artificial Intelligence and Image Processing
115 rdf:type schema:DefinedTerm
116 sg:person.010622026625.92 schema:affiliation grid-institutes:grid.6292.f
117 schema:familyName Buoncompagni
118 schema:givenName Simone
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010622026625.92
120 rdf:type schema:Person
121 sg:person.011002501427.92 schema:affiliation grid-institutes:grid.6292.f
122 schema:familyName Franco
123 schema:givenName Annalisa
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011002501427.92
125 rdf:type schema:Person
126 sg:person.013075040365.65 schema:affiliation grid-institutes:grid.6292.f
127 schema:familyName Maio
128 schema:givenName Dario
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075040365.65
130 rdf:type schema:Person
131 grid-institutes:grid.6292.f schema:alternateName C.d.L. Ingegneria e Scienze Informatiche, University of Bologna, Via Sacchi, 3, Cesena (FC), Italy
132 schema:name C.d.L. Ingegneria e Scienze Informatiche, University of Bologna, Via Sacchi, 3, Cesena (FC), Italy
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...