Collaborative Representation of Statistically Independent Filters’ Response: An Application to Face Recognition Under Illicit Drug Abuse Alterations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

Raghavendra Ramachandra , Kiran Raja , Sushma Venkatesh , Christoph Busch

ABSTRACT

Face biometrics is widely deployed in many security and surveillance applications that demand a secure and reliable authentication service. The performance of face recognition systems is primarily based on the analysis of texture and geometric variation of the face. Continuous and extensive consumption of illicit drugs will significantly result in deformation of both texture and geometric characteristics of a face and thus, impose additional challenges on accurately identifying the subjects who abuse drugs. This work proposes a novel scheme to improve robustness of face recognition system to address the variations caused by the prolonged use of illicit drugs. The proposed scheme is based on the collaborative representation of statistically independent filters whose responses are computed on the face images captured before and after substance (or drug) abuse. Extensive experiments are carried out on the publicly available Illicit Drug Abuse Database (DAD) comprised of face images from 100 subjects. The obtained results indicate better performance of the proposed scheme when compared with six different state-of-the-art approaches including a commercial face recognition system. More... »

PAGES

448-458

References to SciGraph publications

Book

TITLE

Image Analysis

ISBN

978-3-319-59128-5
978-3-319-59129-2

From Grant

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-59129-2_38

DOI

http://dx.doi.org/10.1007/978-3-319-59129-2_38

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086114254


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Norwegian University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.5947.f", 
          "name": [
            "Norwegian University of Science and Technology (NTNU)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramachandra", 
        "givenName": "Raghavendra", 
        "id": "sg:person.016702423512.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016702423512.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norwegian University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.5947.f", 
          "name": [
            "Norwegian University of Science and Technology (NTNU)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raja", 
        "givenName": "Kiran", 
        "id": "sg:person.011534733463.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534733463.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norwegian University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.5947.f", 
          "name": [
            "Norwegian University of Science and Technology (NTNU)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Venkatesh", 
        "givenName": "Sushma", 
        "id": "sg:person.07550415603.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07550415603.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norwegian University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.5947.f", 
          "name": [
            "Norwegian University of Science and Technology (NTNU)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Busch", 
        "givenName": "Christoph", 
        "id": "sg:person.011143356603.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011143356603.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:visi.0000013087.49260.fb", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001944608", 
          "https://doi.org/10.1023/b:visi.0000013087.49260.fb"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2947626.2947644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039935474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-21596-4_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049149218", 
          "https://doi.org/10.1007/978-3-642-21596-4_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-21596-4_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049149218", 
          "https://doi.org/10.1007/978-3-642-21596-4_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wacv.2016.7477556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093972639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093997066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2016.322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094158430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/btas.2012.6374605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094454447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icb.2016.7550091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095047468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icot.2014.6954663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095490185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isba.2016.7477226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095584167"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "Face biometrics is widely deployed in many security and surveillance applications that demand a secure and reliable authentication service. The performance of face recognition systems is primarily based on the analysis of texture and geometric variation of the face. Continuous and extensive consumption of illicit drugs will significantly result in deformation of both texture and geometric characteristics of a face and thus, impose additional challenges on accurately identifying the subjects who abuse drugs. This work proposes a novel scheme to improve robustness of face recognition system to address the variations caused by the prolonged use of illicit drugs. The proposed scheme is based on the collaborative representation of statistically independent filters whose responses are computed on the face images captured before and after substance (or drug) abuse. Extensive experiments are carried out on the publicly available Illicit Drug Abuse Database (DAD) comprised of face images from 100 subjects. The obtained results indicate better performance of the proposed scheme when compared with six different state-of-the-art approaches including a commercial face recognition system.", 
    "editor": [
      {
        "familyName": "Sharma", 
        "givenName": "Puneet", 
        "type": "Person"
      }, 
      {
        "familyName": "Bianchi", 
        "givenName": "Filippo Maria", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-59129-2_38", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4677717", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-59128-5", 
        "978-3-319-59129-2"
      ], 
      "name": "Image Analysis", 
      "type": "Book"
    }, 
    "name": "Collaborative Representation of Statistically Independent Filters\u2019 Response: An Application to Face Recognition Under Illicit Drug Abuse Alterations", 
    "pagination": "448-458", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-59129-2_38"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6cbc0c70fd8a551cbf17b9ea316c9610b4237551708cc575802e84dac492ffc7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086114254"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-59129-2_38", 
      "https://app.dimensions.ai/details/publication/pub.1086114254"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000279.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-59129-2_38"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-59129-2_38'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-59129-2_38'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-59129-2_38'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-59129-2_38'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-59129-2_38 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N52641c67cfeb4a10842a81c646ffe1a2
4 schema:citation sg:pub.10.1007/978-3-642-21596-4_20
5 sg:pub.10.1023/b:visi.0000013087.49260.fb
6 https://doi.org/10.1109/btas.2012.6374605
7 https://doi.org/10.1109/cvpr.2005.177
8 https://doi.org/10.1109/cvpr.2016.322
9 https://doi.org/10.1109/icb.2016.7550091
10 https://doi.org/10.1109/icot.2014.6954663
11 https://doi.org/10.1109/isba.2016.7477226
12 https://doi.org/10.1109/wacv.2016.7477556
13 https://doi.org/10.1145/2947626.2947644
14 schema:datePublished 2017
15 schema:datePublishedReg 2017-01-01
16 schema:description Face biometrics is widely deployed in many security and surveillance applications that demand a secure and reliable authentication service. The performance of face recognition systems is primarily based on the analysis of texture and geometric variation of the face. Continuous and extensive consumption of illicit drugs will significantly result in deformation of both texture and geometric characteristics of a face and thus, impose additional challenges on accurately identifying the subjects who abuse drugs. This work proposes a novel scheme to improve robustness of face recognition system to address the variations caused by the prolonged use of illicit drugs. The proposed scheme is based on the collaborative representation of statistically independent filters whose responses are computed on the face images captured before and after substance (or drug) abuse. Extensive experiments are carried out on the publicly available Illicit Drug Abuse Database (DAD) comprised of face images from 100 subjects. The obtained results indicate better performance of the proposed scheme when compared with six different state-of-the-art approaches including a commercial face recognition system.
17 schema:editor Nb2d6b1d8c63d44ceaae026059da4a860
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf Ncfc1b149280246b98a12d20fe45d8274
22 schema:name Collaborative Representation of Statistically Independent Filters’ Response: An Application to Face Recognition Under Illicit Drug Abuse Alterations
23 schema:pagination 448-458
24 schema:productId N59eab680c542411e88561cce514e0371
25 N6783c4578b214cca8e65e9268853c9b4
26 Nbdbf44fddb7544be945c0731dc41e8a1
27 schema:publisher N5da180d97d564174a1f412f9455698b8
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086114254
29 https://doi.org/10.1007/978-3-319-59129-2_38
30 schema:sdDatePublished 2019-04-15T18:14
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N6351cf51ca5d41b8a857641789cad27a
33 schema:url http://link.springer.com/10.1007/978-3-319-59129-2_38
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N434983eb67d749fb924d523aff39f727 schema:familyName Bianchi
38 schema:givenName Filippo Maria
39 rdf:type schema:Person
40 N52641c67cfeb4a10842a81c646ffe1a2 rdf:first sg:person.016702423512.58
41 rdf:rest Nb6143a7b8a2c42ed82a20f42ae8b3465
42 N59eab680c542411e88561cce514e0371 schema:name doi
43 schema:value 10.1007/978-3-319-59129-2_38
44 rdf:type schema:PropertyValue
45 N5da180d97d564174a1f412f9455698b8 schema:location Cham
46 schema:name Springer International Publishing
47 rdf:type schema:Organisation
48 N6351cf51ca5d41b8a857641789cad27a schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N6783c4578b214cca8e65e9268853c9b4 schema:name dimensions_id
51 schema:value pub.1086114254
52 rdf:type schema:PropertyValue
53 N6a6cb71b0cbd46fa9f3bcd8330f2adcf rdf:first sg:person.011143356603.69
54 rdf:rest rdf:nil
55 N7e33736c903c484291377a7590d721e5 schema:familyName Sharma
56 schema:givenName Puneet
57 rdf:type schema:Person
58 N9708996266a449bc817eb54d7f054c5f rdf:first N434983eb67d749fb924d523aff39f727
59 rdf:rest rdf:nil
60 Nb2d6b1d8c63d44ceaae026059da4a860 rdf:first N7e33736c903c484291377a7590d721e5
61 rdf:rest N9708996266a449bc817eb54d7f054c5f
62 Nb6143a7b8a2c42ed82a20f42ae8b3465 rdf:first sg:person.011534733463.71
63 rdf:rest Ne52e4520926340f0af1805bfdfcb48a3
64 Nbdbf44fddb7544be945c0731dc41e8a1 schema:name readcube_id
65 schema:value 6cbc0c70fd8a551cbf17b9ea316c9610b4237551708cc575802e84dac492ffc7
66 rdf:type schema:PropertyValue
67 Ncfc1b149280246b98a12d20fe45d8274 schema:isbn 978-3-319-59128-5
68 978-3-319-59129-2
69 schema:name Image Analysis
70 rdf:type schema:Book
71 Ne52e4520926340f0af1805bfdfcb48a3 rdf:first sg:person.07550415603.01
72 rdf:rest N6a6cb71b0cbd46fa9f3bcd8330f2adcf
73 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
74 schema:name Information and Computing Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
77 schema:name Artificial Intelligence and Image Processing
78 rdf:type schema:DefinedTerm
79 sg:grant.4677717 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-59129-2_38
80 rdf:type schema:MonetaryGrant
81 sg:person.011143356603.69 schema:affiliation https://www.grid.ac/institutes/grid.5947.f
82 schema:familyName Busch
83 schema:givenName Christoph
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011143356603.69
85 rdf:type schema:Person
86 sg:person.011534733463.71 schema:affiliation https://www.grid.ac/institutes/grid.5947.f
87 schema:familyName Raja
88 schema:givenName Kiran
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534733463.71
90 rdf:type schema:Person
91 sg:person.016702423512.58 schema:affiliation https://www.grid.ac/institutes/grid.5947.f
92 schema:familyName Ramachandra
93 schema:givenName Raghavendra
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016702423512.58
95 rdf:type schema:Person
96 sg:person.07550415603.01 schema:affiliation https://www.grid.ac/institutes/grid.5947.f
97 schema:familyName Venkatesh
98 schema:givenName Sushma
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07550415603.01
100 rdf:type schema:Person
101 sg:pub.10.1007/978-3-642-21596-4_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049149218
102 https://doi.org/10.1007/978-3-642-21596-4_20
103 rdf:type schema:CreativeWork
104 sg:pub.10.1023/b:visi.0000013087.49260.fb schema:sameAs https://app.dimensions.ai/details/publication/pub.1001944608
105 https://doi.org/10.1023/b:visi.0000013087.49260.fb
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/btas.2012.6374605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094454447
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/cvpr.2005.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093997066
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/cvpr.2016.322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094158430
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/icb.2016.7550091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095047468
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/icot.2014.6954663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095490185
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/isba.2016.7477226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095584167
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/wacv.2016.7477556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093972639
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1145/2947626.2947644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039935474
122 rdf:type schema:CreativeWork
123 https://www.grid.ac/institutes/grid.5947.f schema:alternateName Norwegian University of Science and Technology
124 schema:name Norwegian University of Science and Technology (NTNU)
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...