ArmaTweet: Detecting Events by Semantic Tweet Analysis View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017-05-07

AUTHORS

Alberto Tonon , Philippe Cudré-Mauroux , Albert Blarer , Vincent Lenders , Boris Motik

ABSTRACT

Armasuisse Science and Technology, the R&D agency for the Swiss Armed Forces, is developing a Social Media Analysis (SMA) system to help detect events such as natural disasters and terrorist activity by analysing Twitter posts. The system currently supports only keyword search, which cannot identify complex events such as ‘politician dying’ or ‘militia terror act’ since the keywords that correctly identify such events are typically unknown. In this paper we present ArmaTweet, an extension of SMA developed in a collaboration between armasuisse and the Universities of Fribourg and Oxford that supports semantic event detection. Our system extracts a structured representation from the tweets’ text using NLP technology, which it then integrates with DBpedia and WordNet in an RDF knowledge graph. Security analysts can thus describe the events of interest precisely and declaratively using SPARQL queries over the graph. Our experiments show that ArmaTweet can detect many complex events that cannot be detected by keywords alone. More... »

PAGES

138-153

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-58451-5_10

DOI

http://dx.doi.org/10.1007/978-3-319-58451-5_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086019948


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "eXascale Infolab, University of Fribourg, Fribourg, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.8534.a", 
          "name": [
            "eXascale Infolab, University of Fribourg, Fribourg, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tonon", 
        "givenName": "Alberto", 
        "id": "sg:person.015424223465.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015424223465.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "eXascale Infolab, University of Fribourg, Fribourg, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.8534.a", 
          "name": [
            "eXascale Infolab, University of Fribourg, Fribourg, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cudr\u00e9-Mauroux", 
        "givenName": "Philippe", 
        "id": "sg:person.011707054265.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011707054265.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Science & Technology, C4I, armasuisse, Thun, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.434421.4", 
          "name": [
            "Science & Technology, C4I, armasuisse, Thun, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blarer", 
        "givenName": "Albert", 
        "id": "sg:person.07525017323.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07525017323.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Science & Technology, C4I, armasuisse, Thun, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.434421.4", 
          "name": [
            "Science & Technology, C4I, armasuisse, Thun, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lenders", 
        "givenName": "Vincent", 
        "id": "sg:person.013325327157.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013325327157.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Motik", 
        "givenName": "Boris", 
        "id": "sg:person.07401076267.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07401076267.36"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-05-07", 
    "datePublishedReg": "2017-05-07", 
    "description": "Armasuisse Science and Technology, the R&D agency for the Swiss Armed Forces, is developing a Social Media Analysis (SMA) system to help detect events such as natural disasters and terrorist activity by analysing Twitter posts. The system currently supports only keyword search, which cannot identify complex events such as \u2018politician dying\u2019 or \u2018militia terror act\u2019 since the keywords that correctly identify such events are typically unknown. In this paper we present ArmaTweet, an extension of SMA developed in a collaboration between armasuisse and the Universities of Fribourg and Oxford that supports semantic event detection. Our system extracts a structured representation from the tweets\u2019 text using NLP technology, which it then integrates with DBpedia and WordNet in an RDF knowledge graph. Security analysts can thus describe the events of interest precisely and declaratively using SPARQL queries over the graph. Our experiments show that ArmaTweet can detect many complex events that cannot be detected by keywords alone.", 
    "editor": [
      {
        "familyName": "Blomqvist", 
        "givenName": "Eva", 
        "type": "Person"
      }, 
      {
        "familyName": "Maynard", 
        "givenName": "Diana", 
        "type": "Person"
      }, 
      {
        "familyName": "Gangemi", 
        "givenName": "Aldo", 
        "type": "Person"
      }, 
      {
        "familyName": "Hoekstra", 
        "givenName": "Rinke", 
        "type": "Person"
      }, 
      {
        "familyName": "Hitzler", 
        "givenName": "Pascal", 
        "type": "Person"
      }, 
      {
        "familyName": "Hartig", 
        "givenName": "Olaf", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-58451-5_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-58450-8", 
        "978-3-319-58451-5"
      ], 
      "name": "The Semantic Web", 
      "type": "Book"
    }, 
    "keywords": [
      "Social Media Analysis System", 
      "RDF knowledge graphs", 
      "semantic event detection", 
      "complex events", 
      "SPARQL queries", 
      "knowledge graph", 
      "event detection", 
      "keyword search", 
      "event of interest", 
      "NLP technology", 
      "tweet analysis", 
      "structured representation", 
      "security analysts", 
      "Twitter posts", 
      "graph", 
      "analysis system", 
      "keywords", 
      "natural disasters", 
      "DBpedia", 
      "queries", 
      "technology", 
      "WordNet", 
      "terrorist activities", 
      "terror acts", 
      "system", 
      "tweets", 
      "representation", 
      "analysts", 
      "search", 
      "University of Fribourg", 
      "text", 
      "collaboration", 
      "detection", 
      "disasters", 
      "extension", 
      "such events", 
      "Swiss Armed Forces", 
      "experiments", 
      "science", 
      "interest", 
      "events", 
      "University", 
      "post", 
      "analysis", 
      "agencies", 
      "armed forces", 
      "Fribourg", 
      "act", 
      "force", 
      "activity", 
      "Oxford", 
      "politicians", 
      "SMA", 
      "paper", 
      "Armasuisse Science", 
      "Media Analysis (SMA) system", 
      "militia terror act", 
      "ArmaTweet", 
      "extension of SMA", 
      "armasuisse", 
      "Semantic Tweet Analysis"
    ], 
    "name": "ArmaTweet: Detecting Events by Semantic Tweet Analysis", 
    "pagination": "138-153", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086019948"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-58451-5_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-58451-5_10", 
      "https://app.dimensions.ai/details/publication/pub.1086019948"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_213.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-58451-5_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-58451-5_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-58451-5_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-58451-5_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-58451-5_10'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      23 PREDICATES      86 URIs      79 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-58451-5_10 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Na6c77a26cf8c47dca05f74aae2ae9835
4 schema:datePublished 2017-05-07
5 schema:datePublishedReg 2017-05-07
6 schema:description Armasuisse Science and Technology, the R&D agency for the Swiss Armed Forces, is developing a Social Media Analysis (SMA) system to help detect events such as natural disasters and terrorist activity by analysing Twitter posts. The system currently supports only keyword search, which cannot identify complex events such as ‘politician dying’ or ‘militia terror act’ since the keywords that correctly identify such events are typically unknown. In this paper we present ArmaTweet, an extension of SMA developed in a collaboration between armasuisse and the Universities of Fribourg and Oxford that supports semantic event detection. Our system extracts a structured representation from the tweets’ text using NLP technology, which it then integrates with DBpedia and WordNet in an RDF knowledge graph. Security analysts can thus describe the events of interest precisely and declaratively using SPARQL queries over the graph. Our experiments show that ArmaTweet can detect many complex events that cannot be detected by keywords alone.
7 schema:editor Ned37becb6d3142839d699e83267317a5
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nf70e0fb9068441ac94c415221900f3cd
12 schema:keywords ArmaTweet
13 Armasuisse Science
14 DBpedia
15 Fribourg
16 Media Analysis (SMA) system
17 NLP technology
18 Oxford
19 RDF knowledge graphs
20 SMA
21 SPARQL queries
22 Semantic Tweet Analysis
23 Social Media Analysis System
24 Swiss Armed Forces
25 Twitter posts
26 University
27 University of Fribourg
28 WordNet
29 act
30 activity
31 agencies
32 analysis
33 analysis system
34 analysts
35 armasuisse
36 armed forces
37 collaboration
38 complex events
39 detection
40 disasters
41 event detection
42 event of interest
43 events
44 experiments
45 extension
46 extension of SMA
47 force
48 graph
49 interest
50 keyword search
51 keywords
52 knowledge graph
53 militia terror act
54 natural disasters
55 paper
56 politicians
57 post
58 queries
59 representation
60 science
61 search
62 security analysts
63 semantic event detection
64 structured representation
65 such events
66 system
67 technology
68 terror acts
69 terrorist activities
70 text
71 tweet analysis
72 tweets
73 schema:name ArmaTweet: Detecting Events by Semantic Tweet Analysis
74 schema:pagination 138-153
75 schema:productId N090003345da44f6c87008b9e0158cac6
76 N562288e60ef84807b1e43055a4ba9cd4
77 schema:publisher Nb87a66c3c778455da941dfb328b551a7
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086019948
79 https://doi.org/10.1007/978-3-319-58451-5_10
80 schema:sdDatePublished 2022-01-01T19:12
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N9946f2b65fa341fe94d6c02a73e833ee
83 schema:url https://doi.org/10.1007/978-3-319-58451-5_10
84 sgo:license sg:explorer/license/
85 sgo:sdDataset chapters
86 rdf:type schema:Chapter
87 N090003345da44f6c87008b9e0158cac6 schema:name dimensions_id
88 schema:value pub.1086019948
89 rdf:type schema:PropertyValue
90 N1b026b404d3d4129bd9ee44df5daea0d rdf:first sg:person.013325327157.30
91 rdf:rest Nc90ccdd6667e40bd947ec667a9b4f90e
92 N424e4dc1443b4756a20f43765767a725 rdf:first sg:person.07525017323.95
93 rdf:rest N1b026b404d3d4129bd9ee44df5daea0d
94 N44689688a21748f3ace0d523af48666b schema:familyName Blomqvist
95 schema:givenName Eva
96 rdf:type schema:Person
97 N51d903584eb84355b3be1e1ce4c48b65 schema:familyName Gangemi
98 schema:givenName Aldo
99 rdf:type schema:Person
100 N562288e60ef84807b1e43055a4ba9cd4 schema:name doi
101 schema:value 10.1007/978-3-319-58451-5_10
102 rdf:type schema:PropertyValue
103 N5d917ca61e754d2a9b0d57287e69163f rdf:first Na7cf3aab708d4c88af85a2bd8c01003f
104 rdf:rest Nd9b5d48d766d46e78e21b47f097037b6
105 N5eb8f0fd77834b61a279a243db047e66 rdf:first Na67d90ce9fb34fd59c6203a3070bdc53
106 rdf:rest Nc0c6039345cb4707a42e09b80933709d
107 N7ced40ae367243c0ac56f1d174c97cac rdf:first Nf7fc81c89c134f3f90e79883aac63dc3
108 rdf:rest N5d917ca61e754d2a9b0d57287e69163f
109 N90890091857843c3beb0632b4eea079d schema:familyName Hartig
110 schema:givenName Olaf
111 rdf:type schema:Person
112 N9946f2b65fa341fe94d6c02a73e833ee schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N9cf6548f4ac34e0a87bdaf75b7622fec rdf:first sg:person.011707054265.43
115 rdf:rest N424e4dc1443b4756a20f43765767a725
116 Na67d90ce9fb34fd59c6203a3070bdc53 schema:familyName Maynard
117 schema:givenName Diana
118 rdf:type schema:Person
119 Na6c77a26cf8c47dca05f74aae2ae9835 rdf:first sg:person.015424223465.28
120 rdf:rest N9cf6548f4ac34e0a87bdaf75b7622fec
121 Na7cf3aab708d4c88af85a2bd8c01003f schema:familyName Hitzler
122 schema:givenName Pascal
123 rdf:type schema:Person
124 Nb87a66c3c778455da941dfb328b551a7 schema:name Springer Nature
125 rdf:type schema:Organisation
126 Nc0c6039345cb4707a42e09b80933709d rdf:first N51d903584eb84355b3be1e1ce4c48b65
127 rdf:rest N7ced40ae367243c0ac56f1d174c97cac
128 Nc90ccdd6667e40bd947ec667a9b4f90e rdf:first sg:person.07401076267.36
129 rdf:rest rdf:nil
130 Nd9b5d48d766d46e78e21b47f097037b6 rdf:first N90890091857843c3beb0632b4eea079d
131 rdf:rest rdf:nil
132 Ned37becb6d3142839d699e83267317a5 rdf:first N44689688a21748f3ace0d523af48666b
133 rdf:rest N5eb8f0fd77834b61a279a243db047e66
134 Nf70e0fb9068441ac94c415221900f3cd schema:isbn 978-3-319-58450-8
135 978-3-319-58451-5
136 schema:name The Semantic Web
137 rdf:type schema:Book
138 Nf7fc81c89c134f3f90e79883aac63dc3 schema:familyName Hoekstra
139 schema:givenName Rinke
140 rdf:type schema:Person
141 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
142 schema:name Information and Computing Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
145 schema:name Information Systems
146 rdf:type schema:DefinedTerm
147 sg:person.011707054265.43 schema:affiliation grid-institutes:grid.8534.a
148 schema:familyName Cudré-Mauroux
149 schema:givenName Philippe
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011707054265.43
151 rdf:type schema:Person
152 sg:person.013325327157.30 schema:affiliation grid-institutes:grid.434421.4
153 schema:familyName Lenders
154 schema:givenName Vincent
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013325327157.30
156 rdf:type schema:Person
157 sg:person.015424223465.28 schema:affiliation grid-institutes:grid.8534.a
158 schema:familyName Tonon
159 schema:givenName Alberto
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015424223465.28
161 rdf:type schema:Person
162 sg:person.07401076267.36 schema:affiliation grid-institutes:grid.4991.5
163 schema:familyName Motik
164 schema:givenName Boris
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07401076267.36
166 rdf:type schema:Person
167 sg:person.07525017323.95 schema:affiliation grid-institutes:grid.434421.4
168 schema:familyName Blarer
169 schema:givenName Albert
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07525017323.95
171 rdf:type schema:Person
172 grid-institutes:grid.434421.4 schema:alternateName Science & Technology, C4I, armasuisse, Thun, Switzerland
173 schema:name Science & Technology, C4I, armasuisse, Thun, Switzerland
174 rdf:type schema:Organization
175 grid-institutes:grid.4991.5 schema:alternateName University of Oxford, Oxford, UK
176 schema:name University of Oxford, Oxford, UK
177 rdf:type schema:Organization
178 grid-institutes:grid.8534.a schema:alternateName eXascale Infolab, University of Fribourg, Fribourg, Switzerland
179 schema:name eXascale Infolab, University of Fribourg, Fribourg, Switzerland
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...