A Fast Algorithm for Large Common Connected Induced Subgraphs View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017-04-25

AUTHORS

Alessio Conte , Roberto Grossi , Andrea Marino , Lorenzo Tattini , Luca Versari

ABSTRACT

We present a fast algorithm for finding large common subgraphs, which can be exploited for detecting structural and functional relationships between biological macromolecules. Many fast algorithms exist for finding a single maximum common subgraph. We show with an example that this gives limited information, motivating the less studied problem of finding many large common subgraphs covering different areas. As the latter is also hard, we give heuristics that improve performance by several orders of magnitude. As a case study, we validate our findings experimentally on protein graphs with thousands of atoms. More... »

PAGES

62-74

Book

TITLE

Algorithms for Computational Biology

ISBN

978-3-319-58162-0
978-3-319-58163-7

From Grant

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-58163-7_4

DOI

http://dx.doi.org/10.1007/978-3-319-58163-7_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086868821


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Pisa", 
          "id": "https://www.grid.ac/institutes/grid.5395.a", 
          "name": [
            "Inria, Universit\u00e0 di Pisa and Erable, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Conte", 
        "givenName": "Alessio", 
        "id": "sg:person.013571166511.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013571166511.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pisa", 
          "id": "https://www.grid.ac/institutes/grid.5395.a", 
          "name": [
            "Inria, Universit\u00e0 di Pisa and Erable, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grossi", 
        "givenName": "Roberto", 
        "id": "sg:person.01062373707.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062373707.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pisa", 
          "id": "https://www.grid.ac/institutes/grid.5395.a", 
          "name": [
            "Inria, Universit\u00e0 di Pisa and Erable, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marino", 
        "givenName": "Andrea", 
        "id": "sg:person.07515532766.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07515532766.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Research on Cancer and Aging in Nice", 
          "id": "https://www.grid.ac/institutes/grid.463830.a", 
          "name": [
            "IRCAN, CNRS UMR, 7284, Nice, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tattini", 
        "givenName": "Lorenzo", 
        "id": "sg:person.0736724411.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736724411.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Scuola Normale Superiore di Pisa", 
          "id": "https://www.grid.ac/institutes/grid.6093.c", 
          "name": [
            "Scuola Normale Superiore, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Versari", 
        "givenName": "Luca", 
        "id": "sg:person.016171366611.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016171366611.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0304-3975(00)00286-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002396737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/321921.321925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008268655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-218x(95)00026-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013152121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11533719_73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017311354", 
          "https://doi.org/10.1007/11533719_73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11533719_73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017311354", 
          "https://doi.org/10.1007/11533719_73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025948952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1994.1657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026428993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asi.20140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027402315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/spe.588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027808390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6446(02)02411-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032222306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6446(02)02411-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032222306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1014052.1014123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035394118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/spe.4380120103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039746604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-55210-3_198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040657953", 
          "https://doi.org/10.1007/3-540-55210-3_198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02575586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041808659", 
          "https://doi.org/10.1007/bf02575586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02575586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041808659", 
          "https://doi.org/10.1007/bf02575586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/362342.362367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049082651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050561540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6377(90)90057-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052413170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6377(90)90057-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052413170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci00056a002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055400933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci9601675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055405148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci9601675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055405148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.1996.3.289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comjnl/45.6.631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059479450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijbra.2013.054688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067439501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7155/jgaa.00139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073626425"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04-25", 
    "datePublishedReg": "2017-04-25", 
    "description": "We present a fast algorithm for finding large common subgraphs, which can be exploited for detecting structural and functional relationships between biological macromolecules. Many fast algorithms exist for finding a single maximum common subgraph. We show with an example that this gives limited information, motivating the less studied problem of finding many large common subgraphs covering different areas. As the latter is also hard, we give heuristics that improve performance by several orders of magnitude. As a case study, we validate our findings experimentally on protein graphs with thousands of atoms.", 
    "editor": [
      {
        "familyName": "Figueiredo", 
        "givenName": "Daniel", 
        "type": "Person"
      }, 
      {
        "familyName": "Mart\u00edn-Vide", 
        "givenName": "Carlos", 
        "type": "Person"
      }, 
      {
        "familyName": "Pratas", 
        "givenName": "Diogo", 
        "type": "Person"
      }, 
      {
        "familyName": "Vega-Rodr\u00edguez", 
        "givenName": "Miguel A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-58163-7_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6853177", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-58162-0", 
        "978-3-319-58163-7"
      ], 
      "name": "Algorithms for Computational Biology", 
      "type": "Book"
    }, 
    "name": "A Fast Algorithm for Large Common Connected Induced Subgraphs", 
    "pagination": "62-74", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-58163-7_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "85a9d2a75643ce8eb1038d35a7e148d310c56f77b6ca4ad314372f449e3d5bef"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086868821"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-58163-7_4", 
      "https://app.dimensions.ai/details/publication/pub.1086868821"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100819_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-58163-7_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-58163-7_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-58163-7_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-58163-7_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-58163-7_4'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      23 PREDICATES      48 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-58163-7_4 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N829c6350f3ba4ac7838d7f6519fdbb95
4 schema:citation sg:pub.10.1007/11533719_73
5 sg:pub.10.1007/3-540-55210-3_198
6 sg:pub.10.1007/bf02575586
7 https://doi.org/10.1002/asi.20140
8 https://doi.org/10.1002/spe.4380120103
9 https://doi.org/10.1002/spe.588
10 https://doi.org/10.1006/jmbi.1994.1657
11 https://doi.org/10.1016/0166-218x(95)00026-n
12 https://doi.org/10.1016/0167-6377(90)90057-c
13 https://doi.org/10.1016/s0304-3975(00)00286-3
14 https://doi.org/10.1016/s1359-6446(02)02411-x
15 https://doi.org/10.1021/ci00056a002
16 https://doi.org/10.1021/ci9601675
17 https://doi.org/10.1089/cmb.1996.3.289
18 https://doi.org/10.1093/bioinformatics/btn186
19 https://doi.org/10.1093/bioinformatics/btn307
20 https://doi.org/10.1093/comjnl/45.6.631
21 https://doi.org/10.1145/1014052.1014123
22 https://doi.org/10.1145/321921.321925
23 https://doi.org/10.1145/362342.362367
24 https://doi.org/10.1504/ijbra.2013.054688
25 https://doi.org/10.7155/jgaa.00139
26 schema:datePublished 2017-04-25
27 schema:datePublishedReg 2017-04-25
28 schema:description We present a fast algorithm for finding large common subgraphs, which can be exploited for detecting structural and functional relationships between biological macromolecules. Many fast algorithms exist for finding a single maximum common subgraph. We show with an example that this gives limited information, motivating the less studied problem of finding many large common subgraphs covering different areas. As the latter is also hard, we give heuristics that improve performance by several orders of magnitude. As a case study, we validate our findings experimentally on protein graphs with thousands of atoms.
29 schema:editor N37b092fd619e4c10b014fd5812d09467
30 schema:genre chapter
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf Na817262c4172432fa08d7f2665b03241
34 schema:name A Fast Algorithm for Large Common Connected Induced Subgraphs
35 schema:pagination 62-74
36 schema:productId N43d0857a4f0940bd9e96ba7c42b0c3a8
37 Naeb1ba1845954fa9ad1014f990803996
38 Nbf9517eb2da642dfbbfa6cbe521de00d
39 schema:publisher N8a6610aae106442ab0dba61c051b0066
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086868821
41 https://doi.org/10.1007/978-3-319-58163-7_4
42 schema:sdDatePublished 2019-04-16T05:02
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N20eb697e62b54ef1a05694f4bad3a669
45 schema:url https://link.springer.com/10.1007%2F978-3-319-58163-7_4
46 sgo:license sg:explorer/license/
47 sgo:sdDataset chapters
48 rdf:type schema:Chapter
49 N189aa910967645a9abd356b97666985a rdf:first Nef38b622d6c949c88af65f2606121931
50 rdf:rest N9c25fdf7172743399054d4314c2bb2eb
51 N20eb697e62b54ef1a05694f4bad3a669 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N37b092fd619e4c10b014fd5812d09467 rdf:first N8f20ffc593c74182a24f7e1e8187b502
54 rdf:rest N189aa910967645a9abd356b97666985a
55 N43d0857a4f0940bd9e96ba7c42b0c3a8 schema:name dimensions_id
56 schema:value pub.1086868821
57 rdf:type schema:PropertyValue
58 N4abe1021f0cd4f9cb88cbd96eb01c223 rdf:first sg:person.01062373707.91
59 rdf:rest Ndc62e7bcd9004ca7bc249d41b3583ccc
60 N8100fc41e7c542199561b5ef0ff9bf96 schema:familyName Pratas
61 schema:givenName Diogo
62 rdf:type schema:Person
63 N829c6350f3ba4ac7838d7f6519fdbb95 rdf:first sg:person.013571166511.36
64 rdf:rest N4abe1021f0cd4f9cb88cbd96eb01c223
65 N8a6610aae106442ab0dba61c051b0066 schema:location Cham
66 schema:name Springer International Publishing
67 rdf:type schema:Organisation
68 N8f20ffc593c74182a24f7e1e8187b502 schema:familyName Figueiredo
69 schema:givenName Daniel
70 rdf:type schema:Person
71 N9c25fdf7172743399054d4314c2bb2eb rdf:first N8100fc41e7c542199561b5ef0ff9bf96
72 rdf:rest Nd86ca5ee64ff496883acdba48f6809bc
73 Na817262c4172432fa08d7f2665b03241 schema:isbn 978-3-319-58162-0
74 978-3-319-58163-7
75 schema:name Algorithms for Computational Biology
76 rdf:type schema:Book
77 Naeb1ba1845954fa9ad1014f990803996 schema:name readcube_id
78 schema:value 85a9d2a75643ce8eb1038d35a7e148d310c56f77b6ca4ad314372f449e3d5bef
79 rdf:type schema:PropertyValue
80 Nb9fa058d94dc45fd9e7a358970ddb109 rdf:first sg:person.016171366611.54
81 rdf:rest rdf:nil
82 Nbf9517eb2da642dfbbfa6cbe521de00d schema:name doi
83 schema:value 10.1007/978-3-319-58163-7_4
84 rdf:type schema:PropertyValue
85 Nc56263337273442aaf3a8cebb561c9d0 schema:familyName Vega-Rodríguez
86 schema:givenName Miguel A.
87 rdf:type schema:Person
88 Nc61118019b764953a43bc392b2e8e795 rdf:first sg:person.0736724411.38
89 rdf:rest Nb9fa058d94dc45fd9e7a358970ddb109
90 Nd86ca5ee64ff496883acdba48f6809bc rdf:first Nc56263337273442aaf3a8cebb561c9d0
91 rdf:rest rdf:nil
92 Ndc62e7bcd9004ca7bc249d41b3583ccc rdf:first sg:person.07515532766.37
93 rdf:rest Nc61118019b764953a43bc392b2e8e795
94 Nef38b622d6c949c88af65f2606121931 schema:familyName Martín-Vide
95 schema:givenName Carlos
96 rdf:type schema:Person
97 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
98 schema:name Biological Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
101 schema:name Biochemistry and Cell Biology
102 rdf:type schema:DefinedTerm
103 sg:grant.6853177 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-58163-7_4
104 rdf:type schema:MonetaryGrant
105 sg:person.01062373707.91 schema:affiliation https://www.grid.ac/institutes/grid.5395.a
106 schema:familyName Grossi
107 schema:givenName Roberto
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062373707.91
109 rdf:type schema:Person
110 sg:person.013571166511.36 schema:affiliation https://www.grid.ac/institutes/grid.5395.a
111 schema:familyName Conte
112 schema:givenName Alessio
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013571166511.36
114 rdf:type schema:Person
115 sg:person.016171366611.54 schema:affiliation https://www.grid.ac/institutes/grid.6093.c
116 schema:familyName Versari
117 schema:givenName Luca
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016171366611.54
119 rdf:type schema:Person
120 sg:person.0736724411.38 schema:affiliation https://www.grid.ac/institutes/grid.463830.a
121 schema:familyName Tattini
122 schema:givenName Lorenzo
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736724411.38
124 rdf:type schema:Person
125 sg:person.07515532766.37 schema:affiliation https://www.grid.ac/institutes/grid.5395.a
126 schema:familyName Marino
127 schema:givenName Andrea
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07515532766.37
129 rdf:type schema:Person
130 sg:pub.10.1007/11533719_73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017311354
131 https://doi.org/10.1007/11533719_73
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/3-540-55210-3_198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040657953
134 https://doi.org/10.1007/3-540-55210-3_198
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/bf02575586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041808659
137 https://doi.org/10.1007/bf02575586
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/asi.20140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027402315
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1002/spe.4380120103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039746604
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/spe.588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027808390
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1006/jmbi.1994.1657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026428993
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/0166-218x(95)00026-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1013152121
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/0167-6377(90)90057-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1052413170
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/s0304-3975(00)00286-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002396737
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s1359-6446(02)02411-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032222306
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1021/ci00056a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055400933
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1021/ci9601675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055405148
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1089/cmb.1996.3.289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245138
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/bioinformatics/btn186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050561540
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/bioinformatics/btn307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025948952
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/comjnl/45.6.631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059479450
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1145/1014052.1014123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035394118
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1145/321921.321925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008268655
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1145/362342.362367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049082651
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1504/ijbra.2013.054688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067439501
174 rdf:type schema:CreativeWork
175 https://doi.org/10.7155/jgaa.00139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073626425
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.463830.a schema:alternateName Institute of Research on Cancer and Aging in Nice
178 schema:name IRCAN, CNRS UMR, 7284, Nice, France
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.5395.a schema:alternateName University of Pisa
181 schema:name Inria, Università di Pisa and Erable, Pisa, Italy
182 rdf:type schema:Organization
183 https://www.grid.ac/institutes/grid.6093.c schema:alternateName Scuola Normale Superiore di Pisa
184 schema:name Scuola Normale Superiore, Pisa, Italy
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...