A Fast Algorithm for Large Common Connected Induced Subgraphs View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017-04-25

AUTHORS

Alessio Conte , Roberto Grossi , Andrea Marino , Lorenzo Tattini , Luca Versari

ABSTRACT

We present a fast algorithm for finding large common subgraphs, which can be exploited for detecting structural and functional relationships between biological macromolecules. Many fast algorithms exist for finding a single maximum common subgraph. We show with an example that this gives limited information, motivating the less studied problem of finding many large common subgraphs covering different areas. As the latter is also hard, we give heuristics that improve performance by several orders of magnitude. As a case study, we validate our findings experimentally on protein graphs with thousands of atoms. More... »

PAGES

62-74

Book

TITLE

Algorithms for Computational Biology

ISBN

978-3-319-58162-0
978-3-319-58163-7

From Grant

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-58163-7_4

DOI

http://dx.doi.org/10.1007/978-3-319-58163-7_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086868821


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Pisa", 
          "id": "https://www.grid.ac/institutes/grid.5395.a", 
          "name": [
            "Inria, Universit\u00e0 di Pisa and Erable, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Conte", 
        "givenName": "Alessio", 
        "id": "sg:person.013571166511.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013571166511.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pisa", 
          "id": "https://www.grid.ac/institutes/grid.5395.a", 
          "name": [
            "Inria, Universit\u00e0 di Pisa and Erable, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grossi", 
        "givenName": "Roberto", 
        "id": "sg:person.01062373707.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062373707.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pisa", 
          "id": "https://www.grid.ac/institutes/grid.5395.a", 
          "name": [
            "Inria, Universit\u00e0 di Pisa and Erable, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marino", 
        "givenName": "Andrea", 
        "id": "sg:person.07515532766.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07515532766.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Research on Cancer and Aging in Nice", 
          "id": "https://www.grid.ac/institutes/grid.463830.a", 
          "name": [
            "IRCAN, CNRS UMR, 7284, Nice, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tattini", 
        "givenName": "Lorenzo", 
        "id": "sg:person.0736724411.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736724411.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Scuola Normale Superiore di Pisa", 
          "id": "https://www.grid.ac/institutes/grid.6093.c", 
          "name": [
            "Scuola Normale Superiore, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Versari", 
        "givenName": "Luca", 
        "id": "sg:person.016171366611.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016171366611.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0304-3975(00)00286-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002396737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/321921.321925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008268655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-218x(95)00026-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013152121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11533719_73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017311354", 
          "https://doi.org/10.1007/11533719_73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11533719_73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017311354", 
          "https://doi.org/10.1007/11533719_73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025948952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1994.1657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026428993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asi.20140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027402315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/spe.588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027808390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6446(02)02411-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032222306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6446(02)02411-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032222306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1014052.1014123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035394118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/spe.4380120103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039746604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-55210-3_198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040657953", 
          "https://doi.org/10.1007/3-540-55210-3_198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02575586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041808659", 
          "https://doi.org/10.1007/bf02575586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02575586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041808659", 
          "https://doi.org/10.1007/bf02575586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/362342.362367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049082651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050561540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6377(90)90057-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052413170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6377(90)90057-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052413170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci00056a002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055400933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci9601675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055405148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci9601675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055405148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.1996.3.289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comjnl/45.6.631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059479450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijbra.2013.054688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067439501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7155/jgaa.00139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073626425"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04-25", 
    "datePublishedReg": "2017-04-25", 
    "description": "We present a fast algorithm for finding large common subgraphs, which can be exploited for detecting structural and functional relationships between biological macromolecules. Many fast algorithms exist for finding a single maximum common subgraph. We show with an example that this gives limited information, motivating the less studied problem of finding many large common subgraphs covering different areas. As the latter is also hard, we give heuristics that improve performance by several orders of magnitude. As a case study, we validate our findings experimentally on protein graphs with thousands of atoms.", 
    "editor": [
      {
        "familyName": "Figueiredo", 
        "givenName": "Daniel", 
        "type": "Person"
      }, 
      {
        "familyName": "Mart\u00edn-Vide", 
        "givenName": "Carlos", 
        "type": "Person"
      }, 
      {
        "familyName": "Pratas", 
        "givenName": "Diogo", 
        "type": "Person"
      }, 
      {
        "familyName": "Vega-Rodr\u00edguez", 
        "givenName": "Miguel A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-58163-7_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6853177", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-58162-0", 
        "978-3-319-58163-7"
      ], 
      "name": "Algorithms for Computational Biology", 
      "type": "Book"
    }, 
    "name": "A Fast Algorithm for Large Common Connected Induced Subgraphs", 
    "pagination": "62-74", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-58163-7_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "85a9d2a75643ce8eb1038d35a7e148d310c56f77b6ca4ad314372f449e3d5bef"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086868821"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-58163-7_4", 
      "https://app.dimensions.ai/details/publication/pub.1086868821"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100819_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-58163-7_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-58163-7_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-58163-7_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-58163-7_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-58163-7_4'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      23 PREDICATES      48 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-58163-7_4 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Na9b26180f0b14be18410259fb596c1c6
4 schema:citation sg:pub.10.1007/11533719_73
5 sg:pub.10.1007/3-540-55210-3_198
6 sg:pub.10.1007/bf02575586
7 https://doi.org/10.1002/asi.20140
8 https://doi.org/10.1002/spe.4380120103
9 https://doi.org/10.1002/spe.588
10 https://doi.org/10.1006/jmbi.1994.1657
11 https://doi.org/10.1016/0166-218x(95)00026-n
12 https://doi.org/10.1016/0167-6377(90)90057-c
13 https://doi.org/10.1016/s0304-3975(00)00286-3
14 https://doi.org/10.1016/s1359-6446(02)02411-x
15 https://doi.org/10.1021/ci00056a002
16 https://doi.org/10.1021/ci9601675
17 https://doi.org/10.1089/cmb.1996.3.289
18 https://doi.org/10.1093/bioinformatics/btn186
19 https://doi.org/10.1093/bioinformatics/btn307
20 https://doi.org/10.1093/comjnl/45.6.631
21 https://doi.org/10.1145/1014052.1014123
22 https://doi.org/10.1145/321921.321925
23 https://doi.org/10.1145/362342.362367
24 https://doi.org/10.1504/ijbra.2013.054688
25 https://doi.org/10.7155/jgaa.00139
26 schema:datePublished 2017-04-25
27 schema:datePublishedReg 2017-04-25
28 schema:description We present a fast algorithm for finding large common subgraphs, which can be exploited for detecting structural and functional relationships between biological macromolecules. Many fast algorithms exist for finding a single maximum common subgraph. We show with an example that this gives limited information, motivating the less studied problem of finding many large common subgraphs covering different areas. As the latter is also hard, we give heuristics that improve performance by several orders of magnitude. As a case study, we validate our findings experimentally on protein graphs with thousands of atoms.
29 schema:editor Nf08f1240a63b4d33b087739e1a96d095
30 schema:genre chapter
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N608503481f3e49f5bcf41f629307b152
34 schema:name A Fast Algorithm for Large Common Connected Induced Subgraphs
35 schema:pagination 62-74
36 schema:productId N62615a9e371b4e6995e27d86936714d2
37 N7b95ea305f2a472b986b9804120fd919
38 Nb119f327f0744d00928f59de7ef0f428
39 schema:publisher N7f46d2ad681b435eba0965c879c6594e
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086868821
41 https://doi.org/10.1007/978-3-319-58163-7_4
42 schema:sdDatePublished 2019-04-16T05:02
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Na5056205556f4920bd53fd2ed8460209
45 schema:url https://link.springer.com/10.1007%2F978-3-319-58163-7_4
46 sgo:license sg:explorer/license/
47 sgo:sdDataset chapters
48 rdf:type schema:Chapter
49 N0e55117f22eb4500b50f6d260a7efab8 rdf:first N6cb7c05daddc42aaa73d5b8b3caca04d
50 rdf:rest Ndffbda0438984dc7851e4e6c6c8d2b84
51 N39efaaaec3b1481980db80d1cbc3601e rdf:first sg:person.07515532766.37
52 rdf:rest Ncec19ebda4794d30969b142a4625f619
53 N473ca91d6fe240a28221b97f50cf71a4 schema:familyName Figueiredo
54 schema:givenName Daniel
55 rdf:type schema:Person
56 N52ae1ba9ac9a444299f0f99dab0f2d7b schema:familyName Martín-Vide
57 schema:givenName Carlos
58 rdf:type schema:Person
59 N608503481f3e49f5bcf41f629307b152 schema:isbn 978-3-319-58162-0
60 978-3-319-58163-7
61 schema:name Algorithms for Computational Biology
62 rdf:type schema:Book
63 N62615a9e371b4e6995e27d86936714d2 schema:name readcube_id
64 schema:value 85a9d2a75643ce8eb1038d35a7e148d310c56f77b6ca4ad314372f449e3d5bef
65 rdf:type schema:PropertyValue
66 N6302955dbdab4e48a11f2bb2bde2a408 rdf:first sg:person.016171366611.54
67 rdf:rest rdf:nil
68 N6cb7c05daddc42aaa73d5b8b3caca04d schema:familyName Pratas
69 schema:givenName Diogo
70 rdf:type schema:Person
71 N7941265818eb479f838d788e28bd408a rdf:first sg:person.01062373707.91
72 rdf:rest N39efaaaec3b1481980db80d1cbc3601e
73 N7b95ea305f2a472b986b9804120fd919 schema:name doi
74 schema:value 10.1007/978-3-319-58163-7_4
75 rdf:type schema:PropertyValue
76 N7f46d2ad681b435eba0965c879c6594e schema:location Cham
77 schema:name Springer International Publishing
78 rdf:type schema:Organisation
79 N8c7689fc7e0c4f79a27c08c832ec3973 rdf:first N52ae1ba9ac9a444299f0f99dab0f2d7b
80 rdf:rest N0e55117f22eb4500b50f6d260a7efab8
81 Na5056205556f4920bd53fd2ed8460209 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Na9b26180f0b14be18410259fb596c1c6 rdf:first sg:person.013571166511.36
84 rdf:rest N7941265818eb479f838d788e28bd408a
85 Nb119f327f0744d00928f59de7ef0f428 schema:name dimensions_id
86 schema:value pub.1086868821
87 rdf:type schema:PropertyValue
88 Ncec19ebda4794d30969b142a4625f619 rdf:first sg:person.0736724411.38
89 rdf:rest N6302955dbdab4e48a11f2bb2bde2a408
90 Ndffbda0438984dc7851e4e6c6c8d2b84 rdf:first Ne591a562df234a9f9fc14195ca50b183
91 rdf:rest rdf:nil
92 Ne591a562df234a9f9fc14195ca50b183 schema:familyName Vega-Rodríguez
93 schema:givenName Miguel A.
94 rdf:type schema:Person
95 Nf08f1240a63b4d33b087739e1a96d095 rdf:first N473ca91d6fe240a28221b97f50cf71a4
96 rdf:rest N8c7689fc7e0c4f79a27c08c832ec3973
97 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
98 schema:name Biological Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
101 schema:name Biochemistry and Cell Biology
102 rdf:type schema:DefinedTerm
103 sg:grant.6853177 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-58163-7_4
104 rdf:type schema:MonetaryGrant
105 sg:person.01062373707.91 schema:affiliation https://www.grid.ac/institutes/grid.5395.a
106 schema:familyName Grossi
107 schema:givenName Roberto
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062373707.91
109 rdf:type schema:Person
110 sg:person.013571166511.36 schema:affiliation https://www.grid.ac/institutes/grid.5395.a
111 schema:familyName Conte
112 schema:givenName Alessio
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013571166511.36
114 rdf:type schema:Person
115 sg:person.016171366611.54 schema:affiliation https://www.grid.ac/institutes/grid.6093.c
116 schema:familyName Versari
117 schema:givenName Luca
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016171366611.54
119 rdf:type schema:Person
120 sg:person.0736724411.38 schema:affiliation https://www.grid.ac/institutes/grid.463830.a
121 schema:familyName Tattini
122 schema:givenName Lorenzo
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736724411.38
124 rdf:type schema:Person
125 sg:person.07515532766.37 schema:affiliation https://www.grid.ac/institutes/grid.5395.a
126 schema:familyName Marino
127 schema:givenName Andrea
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07515532766.37
129 rdf:type schema:Person
130 sg:pub.10.1007/11533719_73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017311354
131 https://doi.org/10.1007/11533719_73
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/3-540-55210-3_198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040657953
134 https://doi.org/10.1007/3-540-55210-3_198
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/bf02575586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041808659
137 https://doi.org/10.1007/bf02575586
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/asi.20140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027402315
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1002/spe.4380120103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039746604
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/spe.588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027808390
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1006/jmbi.1994.1657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026428993
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/0166-218x(95)00026-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1013152121
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/0167-6377(90)90057-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1052413170
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/s0304-3975(00)00286-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002396737
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s1359-6446(02)02411-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032222306
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1021/ci00056a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055400933
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1021/ci9601675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055405148
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1089/cmb.1996.3.289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245138
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/bioinformatics/btn186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050561540
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/bioinformatics/btn307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025948952
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/comjnl/45.6.631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059479450
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1145/1014052.1014123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035394118
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1145/321921.321925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008268655
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1145/362342.362367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049082651
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1504/ijbra.2013.054688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067439501
174 rdf:type schema:CreativeWork
175 https://doi.org/10.7155/jgaa.00139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073626425
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.463830.a schema:alternateName Institute of Research on Cancer and Aging in Nice
178 schema:name IRCAN, CNRS UMR, 7284, Nice, France
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.5395.a schema:alternateName University of Pisa
181 schema:name Inria, Università di Pisa and Erable, Pisa, Italy
182 rdf:type schema:Organization
183 https://www.grid.ac/institutes/grid.6093.c schema:alternateName Scuola Normale Superiore di Pisa
184 schema:name Scuola Normale Superiore, Pisa, Italy
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...