Privacy-Friendly Forecasting for the Smart Grid Using Homomorphic Encryption and the Group Method of Data Handling View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

Joppe W. Bos , Wouter Castryck , Ilia Iliashenko , Frederik Vercauteren

ABSTRACT

While the smart grid has the potential to have a positive impact on the sustainability and efficiency of the electricity market, it also poses some serious challenges with respect to the privacy of the consumer. One of the traditional use-cases of this privacy sensitive data is the usage for forecast prediction. In this paper we show how to compute the forecast prediction such that the supplier does not learn any individual consumer usage information. This is achieved by using the Fan-Vercauteren somewhat homomorphic encryption scheme. Typical prediction algorithms are based on artificial neural networks that require the computation of an activation function which is complicated to compute homomorphically. We investigate a different approach and show that Ivakhnenko’s group method of data handling is suitable for homomorphic computation. Our results show this approach is practical: prediction for a small apartment complex of 10 households can be computed homomorphically in less than four seconds using a parallel implementation or in about half a minute using a sequential implementation. Expressed in terms of the mean absolute percentage error, the prediction accuracy is roughly \(21\%\). More... »

PAGES

184-201

Book

TITLE

Progress in Cryptology - AFRICACRYPT 2017

ISBN

978-3-319-57338-0
978-3-319-57339-7

Author Affiliations

From Grant

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-57339-7_11

DOI

http://dx.doi.org/10.1007/978-3-319-57339-7_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086875202


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "NXP Semiconductors"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bos", 
        "givenName": "Joppe W.", 
        "id": "sg:person.011356726653.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356726653.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "KU Leuven", 
          "id": "https://www.grid.ac/institutes/grid.5596.f", 
          "name": [
            "KU Leuven", 
            "Laboratoire Paul Painlev\u00e9, Universit\u00e9 de Lille-1"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Castryck", 
        "givenName": "Wouter", 
        "id": "sg:person.010033757237.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010033757237.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "KU Leuven", 
          "id": "https://www.grid.ac/institutes/grid.5596.f", 
          "name": [
            "KU Leuven"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iliashenko", 
        "givenName": "Ilia", 
        "id": "sg:person.014661522653.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014661522653.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "KU Leuven", 
          "id": "https://www.grid.ac/institutes/grid.5596.f", 
          "name": [
            "KU Leuven", 
            "Open Security Research"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vercauteren", 
        "givenName": "Frederik", 
        "id": "sg:person.015377423247.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015377423247.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/2535925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003668354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1878431.1878446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007053606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1536414.1536440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007792572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(70)90092-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009713401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(70)90092-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009713401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-29485-8_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011586268", 
          "https://doi.org/10.1007/978-3-319-29485-8_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2008.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013286028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2046556.2046564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014612638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13190-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025305533", 
          "https://doi.org/10.1007/978-3-642-13190-5_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13190-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025305533", 
          "https://doi.org/10.1007/978-3-642-13190-5_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-31284-7_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026590362", 
          "https://doi.org/10.1007/978-3-642-31284-7_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-31284-7_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026590362", 
          "https://doi.org/10.1007/978-3-642-31284-7_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-48910-x_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026773924", 
          "https://doi.org/10.1007/3-540-48910-x_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-48910-x_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026773924", 
          "https://doi.org/10.1007/3-540-48910-x_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2602044.2602082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028048776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/jmc-2015-0016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034673966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22444-7_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041309523", 
          "https://doi.org/10.1007/978-3-642-22444-7_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22444-7_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041309523", 
          "https://doi.org/10.1007/978-3-642-22444-7_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22263-4_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041649997", 
          "https://doi.org/10.1007/978-3-642-22263-4_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22263-4_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041649997", 
          "https://doi.org/10.1007/978-3-642-22263-4_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-45239-0_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042526343", 
          "https://doi.org/10.1007/978-3-642-45239-0_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2014.01.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052769485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.192069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061178984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/surv.2014.032014.00094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061446943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2016.2622218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083717704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-69453-5_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092291539", 
          "https://doi.org/10.1007/978-3-319-69453-5_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/smartgrid.2010.5622064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093872726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isms.2014.85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094460307"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "While the smart grid has the potential to have a positive impact on the sustainability and efficiency of the electricity market, it also poses some serious challenges with respect to the privacy of the consumer. One of the traditional use-cases of this privacy sensitive data is the usage for forecast prediction. In this paper we show how to compute the forecast prediction such that the supplier does not learn any individual consumer usage information. This is achieved by using the Fan-Vercauteren somewhat homomorphic encryption scheme. Typical prediction algorithms are based on artificial neural networks that require the computation of an activation function which is complicated to compute homomorphically. We investigate a different approach and show that Ivakhnenko\u2019s group method of data handling is suitable for homomorphic computation. Our results show this approach is practical: prediction for a small apartment complex of 10 households can be computed homomorphically in less than four seconds using a parallel implementation or in about half a minute using a sequential implementation. Expressed in terms of the mean absolute percentage error, the prediction accuracy is roughly \\(21\\%\\).", 
    "editor": [
      {
        "familyName": "Joye", 
        "givenName": "Marc", 
        "type": "Person"
      }, 
      {
        "familyName": "Nitaj", 
        "givenName": "Abderrahmane", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-57339-7_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3792284", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-57338-0", 
        "978-3-319-57339-7"
      ], 
      "name": "Progress in Cryptology - AFRICACRYPT 2017", 
      "type": "Book"
    }, 
    "name": "Privacy-Friendly Forecasting for the Smart Grid Using Homomorphic Encryption and the Group Method of Data Handling", 
    "pagination": "184-201", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-57339-7_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f2aca876890d71d1d451477895cdb2ca0cf95d8467afe1c04ad50832c6f5160a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086875202"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-57339-7_11", 
      "https://app.dimensions.ai/details/publication/pub.1086875202"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000600.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-57339-7_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-57339-7_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-57339-7_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-57339-7_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-57339-7_11'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      23 PREDICATES      49 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-57339-7_11 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4566f0aa24db4f4e9b9163cdc9f72739
4 schema:citation sg:pub.10.1007/3-540-48910-x_16
5 sg:pub.10.1007/978-3-319-29485-8_20
6 sg:pub.10.1007/978-3-319-69453-5_22
7 sg:pub.10.1007/978-3-642-13190-5_1
8 sg:pub.10.1007/978-3-642-22263-4_10
9 sg:pub.10.1007/978-3-642-22444-7_15
10 sg:pub.10.1007/978-3-642-31284-7_33
11 sg:pub.10.1007/978-3-642-45239-0_4
12 https://doi.org/10.1016/0005-1098(70)90092-0
13 https://doi.org/10.1016/j.neucom.2008.08.006
14 https://doi.org/10.1016/j.rser.2014.01.069
15 https://doi.org/10.1109/5.192069
16 https://doi.org/10.1109/isms.2014.85
17 https://doi.org/10.1109/jproc.2016.2622218
18 https://doi.org/10.1109/smartgrid.2010.5622064
19 https://doi.org/10.1109/surv.2014.032014.00094
20 https://doi.org/10.1145/1536414.1536440
21 https://doi.org/10.1145/1878431.1878446
22 https://doi.org/10.1145/2046556.2046564
23 https://doi.org/10.1145/2535925
24 https://doi.org/10.1145/2602044.2602082
25 https://doi.org/10.1515/jmc-2015-0016
26 schema:datePublished 2017
27 schema:datePublishedReg 2017-01-01
28 schema:description While the smart grid has the potential to have a positive impact on the sustainability and efficiency of the electricity market, it also poses some serious challenges with respect to the privacy of the consumer. One of the traditional use-cases of this privacy sensitive data is the usage for forecast prediction. In this paper we show how to compute the forecast prediction such that the supplier does not learn any individual consumer usage information. This is achieved by using the Fan-Vercauteren somewhat homomorphic encryption scheme. Typical prediction algorithms are based on artificial neural networks that require the computation of an activation function which is complicated to compute homomorphically. We investigate a different approach and show that Ivakhnenko’s group method of data handling is suitable for homomorphic computation. Our results show this approach is practical: prediction for a small apartment complex of 10 households can be computed homomorphically in less than four seconds using a parallel implementation or in about half a minute using a sequential implementation. Expressed in terms of the mean absolute percentage error, the prediction accuracy is roughly \(21\%\).
29 schema:editor N5258ae02b2aa453abf9dfc8d66063d85
30 schema:genre chapter
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf Nd08a39dc2edb4c269e04f1f8509ad166
34 schema:name Privacy-Friendly Forecasting for the Smart Grid Using Homomorphic Encryption and the Group Method of Data Handling
35 schema:pagination 184-201
36 schema:productId N148704cc756c490b8effae6642e5a0ad
37 N1e702e881c964398aa534736332a3a8d
38 N808e63dfb2164e91949e714c27becae4
39 schema:publisher N1ef38822ea244704838eafd0f0333d5e
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086875202
41 https://doi.org/10.1007/978-3-319-57339-7_11
42 schema:sdDatePublished 2019-04-15T13:10
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nf2548e141d5a4ff4b92436743f21ceec
45 schema:url http://link.springer.com/10.1007/978-3-319-57339-7_11
46 sgo:license sg:explorer/license/
47 sgo:sdDataset chapters
48 rdf:type schema:Chapter
49 N09ad0f4023ba41c4af4dc0e8d9fada86 schema:familyName Joye
50 schema:givenName Marc
51 rdf:type schema:Person
52 N0dd67ca84717488694dccc8e6705dbbe rdf:first sg:person.010033757237.41
53 rdf:rest N6f8953aa24304ee3b4ba92b8a9edef8e
54 N148704cc756c490b8effae6642e5a0ad schema:name doi
55 schema:value 10.1007/978-3-319-57339-7_11
56 rdf:type schema:PropertyValue
57 N1e702e881c964398aa534736332a3a8d schema:name dimensions_id
58 schema:value pub.1086875202
59 rdf:type schema:PropertyValue
60 N1ef38822ea244704838eafd0f0333d5e schema:location Cham
61 schema:name Springer International Publishing
62 rdf:type schema:Organisation
63 N207f6af2e2144db78cd75a3a9122d98e rdf:first Na7325e408e844214a758cb964e960e5d
64 rdf:rest rdf:nil
65 N4566f0aa24db4f4e9b9163cdc9f72739 rdf:first sg:person.011356726653.68
66 rdf:rest N0dd67ca84717488694dccc8e6705dbbe
67 N5258ae02b2aa453abf9dfc8d66063d85 rdf:first N09ad0f4023ba41c4af4dc0e8d9fada86
68 rdf:rest N207f6af2e2144db78cd75a3a9122d98e
69 N5b18ab2fbc554665b3b60d5713676b13 rdf:first sg:person.015377423247.18
70 rdf:rest rdf:nil
71 N6f8953aa24304ee3b4ba92b8a9edef8e rdf:first sg:person.014661522653.83
72 rdf:rest N5b18ab2fbc554665b3b60d5713676b13
73 N808e63dfb2164e91949e714c27becae4 schema:name readcube_id
74 schema:value f2aca876890d71d1d451477895cdb2ca0cf95d8467afe1c04ad50832c6f5160a
75 rdf:type schema:PropertyValue
76 N9410e6dc38f846d992d5630ca7274a6c schema:name NXP Semiconductors
77 rdf:type schema:Organization
78 Na7325e408e844214a758cb964e960e5d schema:familyName Nitaj
79 schema:givenName Abderrahmane
80 rdf:type schema:Person
81 Nd08a39dc2edb4c269e04f1f8509ad166 schema:isbn 978-3-319-57338-0
82 978-3-319-57339-7
83 schema:name Progress in Cryptology - AFRICACRYPT 2017
84 rdf:type schema:Book
85 Nf2548e141d5a4ff4b92436743f21ceec schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information and Computing Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
91 schema:name Artificial Intelligence and Image Processing
92 rdf:type schema:DefinedTerm
93 sg:grant.3792284 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-57339-7_11
94 rdf:type schema:MonetaryGrant
95 sg:person.010033757237.41 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
96 schema:familyName Castryck
97 schema:givenName Wouter
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010033757237.41
99 rdf:type schema:Person
100 sg:person.011356726653.68 schema:affiliation N9410e6dc38f846d992d5630ca7274a6c
101 schema:familyName Bos
102 schema:givenName Joppe W.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356726653.68
104 rdf:type schema:Person
105 sg:person.014661522653.83 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
106 schema:familyName Iliashenko
107 schema:givenName Ilia
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014661522653.83
109 rdf:type schema:Person
110 sg:person.015377423247.18 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
111 schema:familyName Vercauteren
112 schema:givenName Frederik
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015377423247.18
114 rdf:type schema:Person
115 sg:pub.10.1007/3-540-48910-x_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026773924
116 https://doi.org/10.1007/3-540-48910-x_16
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-3-319-29485-8_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011586268
119 https://doi.org/10.1007/978-3-319-29485-8_20
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/978-3-319-69453-5_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092291539
122 https://doi.org/10.1007/978-3-319-69453-5_22
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/978-3-642-13190-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025305533
125 https://doi.org/10.1007/978-3-642-13190-5_1
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/978-3-642-22263-4_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041649997
128 https://doi.org/10.1007/978-3-642-22263-4_10
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/978-3-642-22444-7_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041309523
131 https://doi.org/10.1007/978-3-642-22444-7_15
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/978-3-642-31284-7_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026590362
134 https://doi.org/10.1007/978-3-642-31284-7_33
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/978-3-642-45239-0_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042526343
137 https://doi.org/10.1007/978-3-642-45239-0_4
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0005-1098(70)90092-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009713401
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.neucom.2008.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013286028
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.rser.2014.01.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052769485
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/5.192069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061178984
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/isms.2014.85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094460307
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/jproc.2016.2622218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083717704
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/smartgrid.2010.5622064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093872726
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/surv.2014.032014.00094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446943
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1145/1536414.1536440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007792572
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1145/1878431.1878446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007053606
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1145/2046556.2046564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014612638
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1145/2535925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003668354
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1145/2602044.2602082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028048776
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1515/jmc-2015-0016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034673966
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.5596.f schema:alternateName KU Leuven
168 schema:name KU Leuven
169 Laboratoire Paul Painlevé, Université de Lille-1
170 Open Security Research
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...