Privacy-Friendly Forecasting for the Smart Grid Using Homomorphic Encryption and the Group Method of Data Handling View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

Joppe W. Bos , Wouter Castryck , Ilia Iliashenko , Frederik Vercauteren

ABSTRACT

While the smart grid has the potential to have a positive impact on the sustainability and efficiency of the electricity market, it also poses some serious challenges with respect to the privacy of the consumer. One of the traditional use-cases of this privacy sensitive data is the usage for forecast prediction. In this paper we show how to compute the forecast prediction such that the supplier does not learn any individual consumer usage information. This is achieved by using the Fan-Vercauteren somewhat homomorphic encryption scheme. Typical prediction algorithms are based on artificial neural networks that require the computation of an activation function which is complicated to compute homomorphically. We investigate a different approach and show that Ivakhnenko’s group method of data handling is suitable for homomorphic computation. Our results show this approach is practical: prediction for a small apartment complex of 10 households can be computed homomorphically in less than four seconds using a parallel implementation or in about half a minute using a sequential implementation. Expressed in terms of the mean absolute percentage error, the prediction accuracy is roughly \(21\%\). More... »

PAGES

184-201

References to SciGraph publications

  • 2012. Private Computation of Spatial and Temporal Power Consumption with Smart Meters in ROBOCUP 2005: ROBOT SOCCER WORLD CUP IX
  • 2010. On Ideal Lattices and Learning with Errors over Rings in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2010
  • 2016. NFLlib: NTT-Based Fast Lattice Library in TOPICS IN CRYPTOLOGY - CT-RSA 2016
  • 2011. Privacy-Friendly Energy-Metering via Homomorphic Encryption in SECURITY AND TRUST MANAGEMENT
  • 2017. Fixed-Point Arithmetic in SHE Schemes in SELECTED AREAS IN CRYPTOGRAPHY – SAC 2016
  • 2011. Privacy-Friendly Aggregation for the Smart-Grid in PRIVACY ENHANCING TECHNOLOGIES
  • 1999-04-15. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes in ADVANCES IN CRYPTOLOGY — EUROCRYPT ’99
  • 2013. Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme in CRYPTOGRAPHY AND CODING
  • Book

    TITLE

    Progress in Cryptology - AFRICACRYPT 2017

    ISBN

    978-3-319-57338-0
    978-3-319-57339-7

    Author Affiliations

    From Grant

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-57339-7_11

    DOI

    http://dx.doi.org/10.1007/978-3-319-57339-7_11

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1086875202


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "NXP Semiconductors"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bos", 
            "givenName": "Joppe W.", 
            "id": "sg:person.011356726653.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356726653.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "KU Leuven", 
              "id": "https://www.grid.ac/institutes/grid.5596.f", 
              "name": [
                "KU Leuven", 
                "Laboratoire Paul Painlev\u00e9, Universit\u00e9 de Lille-1"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Castryck", 
            "givenName": "Wouter", 
            "id": "sg:person.010033757237.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010033757237.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "KU Leuven", 
              "id": "https://www.grid.ac/institutes/grid.5596.f", 
              "name": [
                "KU Leuven"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Iliashenko", 
            "givenName": "Ilia", 
            "id": "sg:person.014661522653.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014661522653.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "KU Leuven", 
              "id": "https://www.grid.ac/institutes/grid.5596.f", 
              "name": [
                "KU Leuven", 
                "Open Security Research"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vercauteren", 
            "givenName": "Frederik", 
            "id": "sg:person.015377423247.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015377423247.18"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/2535925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003668354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1878431.1878446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007053606"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1536414.1536440", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007792572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-1098(70)90092-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009713401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-1098(70)90092-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009713401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-29485-8_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011586268", 
              "https://doi.org/10.1007/978-3-319-29485-8_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2008.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013286028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2046556.2046564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014612638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13190-5_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025305533", 
              "https://doi.org/10.1007/978-3-642-13190-5_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13190-5_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025305533", 
              "https://doi.org/10.1007/978-3-642-13190-5_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-31284-7_33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026590362", 
              "https://doi.org/10.1007/978-3-642-31284-7_33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-31284-7_33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026590362", 
              "https://doi.org/10.1007/978-3-642-31284-7_33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48910-x_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026773924", 
              "https://doi.org/10.1007/3-540-48910-x_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48910-x_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026773924", 
              "https://doi.org/10.1007/3-540-48910-x_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2602044.2602082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028048776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/jmc-2015-0016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034673966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-22444-7_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041309523", 
              "https://doi.org/10.1007/978-3-642-22444-7_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-22444-7_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041309523", 
              "https://doi.org/10.1007/978-3-642-22444-7_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-22263-4_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041649997", 
              "https://doi.org/10.1007/978-3-642-22263-4_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-22263-4_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041649997", 
              "https://doi.org/10.1007/978-3-642-22263-4_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-45239-0_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042526343", 
              "https://doi.org/10.1007/978-3-642-45239-0_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rser.2014.01.069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052769485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/5.192069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061178984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/surv.2014.032014.00094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061446943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jproc.2016.2622218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083717704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-69453-5_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092291539", 
              "https://doi.org/10.1007/978-3-319-69453-5_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/smartgrid.2010.5622064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093872726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isms.2014.85", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094460307"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017", 
        "datePublishedReg": "2017-01-01", 
        "description": "While the smart grid has the potential to have a positive impact on the sustainability and efficiency of the electricity market, it also poses some serious challenges with respect to the privacy of the consumer. One of the traditional use-cases of this privacy sensitive data is the usage for forecast prediction. In this paper we show how to compute the forecast prediction such that the supplier does not learn any individual consumer usage information. This is achieved by using the Fan-Vercauteren somewhat homomorphic encryption scheme. Typical prediction algorithms are based on artificial neural networks that require the computation of an activation function which is complicated to compute homomorphically. We investigate a different approach and show that Ivakhnenko\u2019s group method of data handling is suitable for homomorphic computation. Our results show this approach is practical: prediction for a small apartment complex of 10 households can be computed homomorphically in less than four seconds using a parallel implementation or in about half a minute using a sequential implementation. Expressed in terms of the mean absolute percentage error, the prediction accuracy is roughly \\(21\\%\\).", 
        "editor": [
          {
            "familyName": "Joye", 
            "givenName": "Marc", 
            "type": "Person"
          }, 
          {
            "familyName": "Nitaj", 
            "givenName": "Abderrahmane", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-57339-7_11", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3792284", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": {
          "isbn": [
            "978-3-319-57338-0", 
            "978-3-319-57339-7"
          ], 
          "name": "Progress in Cryptology - AFRICACRYPT 2017", 
          "type": "Book"
        }, 
        "name": "Privacy-Friendly Forecasting for the Smart Grid Using Homomorphic Encryption and the Group Method of Data Handling", 
        "pagination": "184-201", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-57339-7_11"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f2aca876890d71d1d451477895cdb2ca0cf95d8467afe1c04ad50832c6f5160a"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1086875202"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-57339-7_11", 
          "https://app.dimensions.ai/details/publication/pub.1086875202"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T13:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000600.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-57339-7_11"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-57339-7_11'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-57339-7_11'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-57339-7_11'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-57339-7_11'


     

    This table displays all metadata directly associated to this object as RDF triples.

    171 TRIPLES      23 PREDICATES      49 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-57339-7_11 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N61ad67588deb4c82be046755de68ae8e
    4 schema:citation sg:pub.10.1007/3-540-48910-x_16
    5 sg:pub.10.1007/978-3-319-29485-8_20
    6 sg:pub.10.1007/978-3-319-69453-5_22
    7 sg:pub.10.1007/978-3-642-13190-5_1
    8 sg:pub.10.1007/978-3-642-22263-4_10
    9 sg:pub.10.1007/978-3-642-22444-7_15
    10 sg:pub.10.1007/978-3-642-31284-7_33
    11 sg:pub.10.1007/978-3-642-45239-0_4
    12 https://doi.org/10.1016/0005-1098(70)90092-0
    13 https://doi.org/10.1016/j.neucom.2008.08.006
    14 https://doi.org/10.1016/j.rser.2014.01.069
    15 https://doi.org/10.1109/5.192069
    16 https://doi.org/10.1109/isms.2014.85
    17 https://doi.org/10.1109/jproc.2016.2622218
    18 https://doi.org/10.1109/smartgrid.2010.5622064
    19 https://doi.org/10.1109/surv.2014.032014.00094
    20 https://doi.org/10.1145/1536414.1536440
    21 https://doi.org/10.1145/1878431.1878446
    22 https://doi.org/10.1145/2046556.2046564
    23 https://doi.org/10.1145/2535925
    24 https://doi.org/10.1145/2602044.2602082
    25 https://doi.org/10.1515/jmc-2015-0016
    26 schema:datePublished 2017
    27 schema:datePublishedReg 2017-01-01
    28 schema:description While the smart grid has the potential to have a positive impact on the sustainability and efficiency of the electricity market, it also poses some serious challenges with respect to the privacy of the consumer. One of the traditional use-cases of this privacy sensitive data is the usage for forecast prediction. In this paper we show how to compute the forecast prediction such that the supplier does not learn any individual consumer usage information. This is achieved by using the Fan-Vercauteren somewhat homomorphic encryption scheme. Typical prediction algorithms are based on artificial neural networks that require the computation of an activation function which is complicated to compute homomorphically. We investigate a different approach and show that Ivakhnenko’s group method of data handling is suitable for homomorphic computation. Our results show this approach is practical: prediction for a small apartment complex of 10 households can be computed homomorphically in less than four seconds using a parallel implementation or in about half a minute using a sequential implementation. Expressed in terms of the mean absolute percentage error, the prediction accuracy is roughly \(21\%\).
    29 schema:editor N50ee5a86ecd6457f9aa80dc7d7874db6
    30 schema:genre chapter
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf Nd54dece5325946c0bf628dc8bc72e6e2
    34 schema:name Privacy-Friendly Forecasting for the Smart Grid Using Homomorphic Encryption and the Group Method of Data Handling
    35 schema:pagination 184-201
    36 schema:productId Nd191a464381a4eb0adc799eb6dde31be
    37 Nd49508caa17f4466a4b0a8c89c4f299e
    38 Nda04bcd2cb0c448ba0111d7ee2638d2a
    39 schema:publisher Nec4cd10fb7ec4b00875f9f7a87c741bf
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086875202
    41 https://doi.org/10.1007/978-3-319-57339-7_11
    42 schema:sdDatePublished 2019-04-15T13:10
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher N22190ac5215940faa318b574f016d5c5
    45 schema:url http://link.springer.com/10.1007/978-3-319-57339-7_11
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset chapters
    48 rdf:type schema:Chapter
    49 N22190ac5215940faa318b574f016d5c5 schema:name Springer Nature - SN SciGraph project
    50 rdf:type schema:Organization
    51 N50ee5a86ecd6457f9aa80dc7d7874db6 rdf:first N707fb2278e08481d8872a68dc91d922f
    52 rdf:rest Nbc6ba4f4c3344016b1443d9ec4bf4e0b
    53 N61ad67588deb4c82be046755de68ae8e rdf:first sg:person.011356726653.68
    54 rdf:rest N9107211a64a94f4ca33c5f86d1d2dd07
    55 N6776b5b98a7c4e1ca9b339f2a14a12f5 schema:familyName Nitaj
    56 schema:givenName Abderrahmane
    57 rdf:type schema:Person
    58 N707fb2278e08481d8872a68dc91d922f schema:familyName Joye
    59 schema:givenName Marc
    60 rdf:type schema:Person
    61 N750cb5fe80e64b1aa0d97ae2d5bb0c0f rdf:first sg:person.015377423247.18
    62 rdf:rest rdf:nil
    63 N8dfd26137f2e445389ad8a1c1cd430b6 rdf:first sg:person.014661522653.83
    64 rdf:rest N750cb5fe80e64b1aa0d97ae2d5bb0c0f
    65 N9107211a64a94f4ca33c5f86d1d2dd07 rdf:first sg:person.010033757237.41
    66 rdf:rest N8dfd26137f2e445389ad8a1c1cd430b6
    67 Nbc6ba4f4c3344016b1443d9ec4bf4e0b rdf:first N6776b5b98a7c4e1ca9b339f2a14a12f5
    68 rdf:rest rdf:nil
    69 Nd191a464381a4eb0adc799eb6dde31be schema:name dimensions_id
    70 schema:value pub.1086875202
    71 rdf:type schema:PropertyValue
    72 Nd49508caa17f4466a4b0a8c89c4f299e schema:name doi
    73 schema:value 10.1007/978-3-319-57339-7_11
    74 rdf:type schema:PropertyValue
    75 Nd54dece5325946c0bf628dc8bc72e6e2 schema:isbn 978-3-319-57338-0
    76 978-3-319-57339-7
    77 schema:name Progress in Cryptology - AFRICACRYPT 2017
    78 rdf:type schema:Book
    79 Nda04bcd2cb0c448ba0111d7ee2638d2a schema:name readcube_id
    80 schema:value f2aca876890d71d1d451477895cdb2ca0cf95d8467afe1c04ad50832c6f5160a
    81 rdf:type schema:PropertyValue
    82 Nec4cd10fb7ec4b00875f9f7a87c741bf schema:location Cham
    83 schema:name Springer International Publishing
    84 rdf:type schema:Organisation
    85 Nf6cce92df05a4b3ca418058feb907d02 schema:name NXP Semiconductors
    86 rdf:type schema:Organization
    87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Information and Computing Sciences
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Artificial Intelligence and Image Processing
    92 rdf:type schema:DefinedTerm
    93 sg:grant.3792284 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-57339-7_11
    94 rdf:type schema:MonetaryGrant
    95 sg:person.010033757237.41 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
    96 schema:familyName Castryck
    97 schema:givenName Wouter
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010033757237.41
    99 rdf:type schema:Person
    100 sg:person.011356726653.68 schema:affiliation Nf6cce92df05a4b3ca418058feb907d02
    101 schema:familyName Bos
    102 schema:givenName Joppe W.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356726653.68
    104 rdf:type schema:Person
    105 sg:person.014661522653.83 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
    106 schema:familyName Iliashenko
    107 schema:givenName Ilia
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014661522653.83
    109 rdf:type schema:Person
    110 sg:person.015377423247.18 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
    111 schema:familyName Vercauteren
    112 schema:givenName Frederik
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015377423247.18
    114 rdf:type schema:Person
    115 sg:pub.10.1007/3-540-48910-x_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026773924
    116 https://doi.org/10.1007/3-540-48910-x_16
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/978-3-319-29485-8_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011586268
    119 https://doi.org/10.1007/978-3-319-29485-8_20
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/978-3-319-69453-5_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092291539
    122 https://doi.org/10.1007/978-3-319-69453-5_22
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/978-3-642-13190-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025305533
    125 https://doi.org/10.1007/978-3-642-13190-5_1
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/978-3-642-22263-4_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041649997
    128 https://doi.org/10.1007/978-3-642-22263-4_10
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/978-3-642-22444-7_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041309523
    131 https://doi.org/10.1007/978-3-642-22444-7_15
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/978-3-642-31284-7_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026590362
    134 https://doi.org/10.1007/978-3-642-31284-7_33
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/978-3-642-45239-0_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042526343
    137 https://doi.org/10.1007/978-3-642-45239-0_4
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/0005-1098(70)90092-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009713401
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.neucom.2008.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013286028
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.rser.2014.01.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052769485
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1109/5.192069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061178984
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1109/isms.2014.85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094460307
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1109/jproc.2016.2622218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083717704
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1109/smartgrid.2010.5622064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093872726
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1109/surv.2014.032014.00094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446943
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1145/1536414.1536440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007792572
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1145/1878431.1878446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007053606
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1145/2046556.2046564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014612638
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1145/2535925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003668354
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1145/2602044.2602082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028048776
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1515/jmc-2015-0016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034673966
    166 rdf:type schema:CreativeWork
    167 https://www.grid.ac/institutes/grid.5596.f schema:alternateName KU Leuven
    168 schema:name KU Leuven
    169 Laboratoire Paul Painlevé, Université de Lille-1
    170 Open Security Research
    171 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...