Canonical Forms and Factorizations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

Larisa Beilina , Evgenii Karchevskii , Mikhail Karchevskii

ABSTRACT

In this chapter we explore in detail the problem of reducing the matrix of an operator to a simple form using special bases in finite-dimensional spaces. The singular value decomposition of an operator is constructed. The Jordan canonical form of the matrix of a finite-dimensional operator is obtained. A special section is devoted to studying matrix pencils. We obtain their canonical forms and describe applications to investigate the structure of solutions of systems of ordinary linear differential equations. More... »

PAGES

163-208

Book

TITLE

Numerical Linear Algebra: Theory and Applications

ISBN

978-3-319-57302-1
978-3-319-57304-5

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-57304-5_5

DOI

http://dx.doi.org/10.1007/978-3-319-57304-5_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091859526


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Chalmers University of Technology and University of Gothenburg"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beilina", 
        "givenName": "Larisa", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kazan Federal University", 
          "id": "https://www.grid.ac/institutes/grid.77268.3c", 
          "name": [
            "Kazan Federal University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karchevskii", 
        "givenName": "Evgenii", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kazan Federal University", 
          "id": "https://www.grid.ac/institutes/grid.77268.3c", 
          "name": [
            "Kazan Federal University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karchevskii", 
        "givenName": "Mikhail", 
        "type": "Person"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "In this chapter we explore in detail the problem of reducing the matrix of an operator to a simple form using special bases in finite-dimensional spaces. The singular value decomposition of an operator is constructed. The Jordan canonical form of the matrix of a finite-dimensional operator is obtained. A special section is devoted to studying matrix pencils. We obtain their canonical forms and describe applications to investigate the structure of solutions of systems of ordinary linear differential equations.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-57304-5_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-57302-1", 
        "978-3-319-57304-5"
      ], 
      "name": "Numerical Linear Algebra: Theory and Applications", 
      "type": "Book"
    }, 
    "name": "Canonical Forms and Factorizations", 
    "pagination": "163-208", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-57304-5_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4105c82ebe4d24325b18b4c3fa4bfd753033c054b2906d200730afb287d20a75"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091859526"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-57304-5_5", 
      "https://app.dimensions.ai/details/publication/pub.1091859526"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000224.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-57304-5_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-57304-5_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-57304-5_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-57304-5_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-57304-5_5'


 

This table displays all metadata directly associated to this object as RDF triples.

72 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-57304-5_5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N4a460888e96c4127a6a861093971be78
4 schema:datePublished 2017
5 schema:datePublishedReg 2017-01-01
6 schema:description In this chapter we explore in detail the problem of reducing the matrix of an operator to a simple form using special bases in finite-dimensional spaces. The singular value decomposition of an operator is constructed. The Jordan canonical form of the matrix of a finite-dimensional operator is obtained. A special section is devoted to studying matrix pencils. We obtain their canonical forms and describe applications to investigate the structure of solutions of systems of ordinary linear differential equations.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N953eaf0d16c7419984c60c1a10ab419e
11 schema:name Canonical Forms and Factorizations
12 schema:pagination 163-208
13 schema:productId N95d15fb7355940819565d06d5c99830b
14 N9d6b97d631584788b8a69e3d0d923593
15 Nbd2c10d34ad5418d9f10326faa3fa74b
16 schema:publisher Nfa8141078ca443d9b0fd389d4ae3df80
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091859526
18 https://doi.org/10.1007/978-3-319-57304-5_5
19 schema:sdDatePublished 2019-04-15T12:27
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher N3827a0eb6f684002a627a95da786b05f
22 schema:url http://link.springer.com/10.1007/978-3-319-57304-5_5
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N042a555f283843a2840e711e2615f857 schema:affiliation https://www.grid.ac/institutes/grid.77268.3c
27 schema:familyName Karchevskii
28 schema:givenName Mikhail
29 rdf:type schema:Person
30 N3827a0eb6f684002a627a95da786b05f schema:name Springer Nature - SN SciGraph project
31 rdf:type schema:Organization
32 N4a460888e96c4127a6a861093971be78 rdf:first N758f8cc817954b2f8fa2b407417fa11d
33 rdf:rest N699550e7e58446e28c6b574d8090d146
34 N699550e7e58446e28c6b574d8090d146 rdf:first Ndd4ffcd913c247f2b1434d42a602454a
35 rdf:rest Ndc0f9dc7b81b4fbfb69cc3895b8ba691
36 N758f8cc817954b2f8fa2b407417fa11d schema:affiliation Ne2df6f84d7be415c9cbc0fa239571d31
37 schema:familyName Beilina
38 schema:givenName Larisa
39 rdf:type schema:Person
40 N953eaf0d16c7419984c60c1a10ab419e schema:isbn 978-3-319-57302-1
41 978-3-319-57304-5
42 schema:name Numerical Linear Algebra: Theory and Applications
43 rdf:type schema:Book
44 N95d15fb7355940819565d06d5c99830b schema:name readcube_id
45 schema:value 4105c82ebe4d24325b18b4c3fa4bfd753033c054b2906d200730afb287d20a75
46 rdf:type schema:PropertyValue
47 N9d6b97d631584788b8a69e3d0d923593 schema:name dimensions_id
48 schema:value pub.1091859526
49 rdf:type schema:PropertyValue
50 Nbd2c10d34ad5418d9f10326faa3fa74b schema:name doi
51 schema:value 10.1007/978-3-319-57304-5_5
52 rdf:type schema:PropertyValue
53 Ndc0f9dc7b81b4fbfb69cc3895b8ba691 rdf:first N042a555f283843a2840e711e2615f857
54 rdf:rest rdf:nil
55 Ndd4ffcd913c247f2b1434d42a602454a schema:affiliation https://www.grid.ac/institutes/grid.77268.3c
56 schema:familyName Karchevskii
57 schema:givenName Evgenii
58 rdf:type schema:Person
59 Ne2df6f84d7be415c9cbc0fa239571d31 schema:name Chalmers University of Technology and University of Gothenburg
60 rdf:type schema:Organization
61 Nfa8141078ca443d9b0fd389d4ae3df80 schema:location Cham
62 schema:name Springer International Publishing
63 rdf:type schema:Organisation
64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
65 schema:name Mathematical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
68 schema:name Pure Mathematics
69 rdf:type schema:DefinedTerm
70 https://www.grid.ac/institutes/grid.77268.3c schema:alternateName Kazan Federal University
71 schema:name Kazan Federal University
72 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...