Conceptualization of Methods and Experiments in Data Intensive Research Domains View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-04-23

AUTHORS

Nikolay A. Skvortsov , Leonid A. Kalinichenko , Dmitry Yu Kovalev

ABSTRACT

Nowadays research of various scopes especially in natural sciences requires manipulation of big volumes of data generated by observation, experiments and modeling. Organization of data-intensive research assumes definition of domain specifications including concepts (specified by ontologies) and formal representation of data describing domain objects and their behavior (using conceptual schemes), shared and maintained by communities working in the respective domains. Research infrastructures are based on domain specifications and provide methods applied to such specifications, collected and developed by research communities. Tools for organizing experiments in research infrastructures are also supported by conceptual specifications of measuring and investigating object properties, applying the research methods, describing and testing the hypotheses. Astronomy as a sample data intensive domain is chosen to demonstrate building of conceptual specifications and usage of them for data analysis. More... »

PAGES

3-17

Book

TITLE

Data Analytics and Management in Data Intensive Domains

ISBN

978-3-319-57134-8
978-3-319-57135-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-57135-5_1

DOI

http://dx.doi.org/10.1007/978-3-319-57135-5_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085038924


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Federal Research Center \u201cComputer Science and Control\u201d of Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.465279.b", 
          "name": [
            "Federal Research Center \u201cComputer Science and Control\u201d of Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Skvortsov", 
        "givenName": "Nikolay A.", 
        "id": "sg:person.016472116440.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016472116440.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal Research Center \u201cComputer Science and Control\u201d of Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.465279.b", 
          "name": [
            "Federal Research Center \u201cComputer Science and Control\u201d of Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalinichenko", 
        "givenName": "Leonid A.", 
        "id": "sg:person.016144507043.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016144507043.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal Research Center \u201cComputer Science and Control\u201d of Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.465279.b", 
          "name": [
            "Federal Research Center \u201cComputer Science and Control\u201d of Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kovalev", 
        "givenName": "Dmitry Yu", 
        "id": "sg:person.016052705532.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016052705532.45"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-04-23", 
    "datePublishedReg": "2017-04-23", 
    "description": "Nowadays research of various scopes especially in natural sciences requires manipulation of big volumes of data generated by observation, experiments and modeling. Organization of data-intensive research assumes definition of domain specifications including concepts (specified by ontologies) and formal representation of data describing domain objects and their behavior (using conceptual schemes), shared and maintained by communities working in the respective domains. Research infrastructures are based on domain specifications and provide methods applied to such specifications, collected and developed by research communities. Tools for organizing experiments in research infrastructures are also supported by conceptual specifications of measuring and investigating object properties, applying the research methods, describing and testing the hypotheses. Astronomy as a sample data intensive domain is chosen to demonstrate building of conceptual specifications and usage of them for data analysis.", 
    "editor": [
      {
        "familyName": "Kalinichenko", 
        "givenName": "Leonid", 
        "type": "Person"
      }, 
      {
        "familyName": "Kuznetsov", 
        "givenName": "Sergei O.", 
        "type": "Person"
      }, 
      {
        "familyName": "Manolopoulos", 
        "givenName": "Yannis", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-57135-5_1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-57134-8", 
        "978-3-319-57135-5"
      ], 
      "name": "Data Analytics and Management in Data Intensive Domains", 
      "type": "Book"
    }, 
    "keywords": [
      "conceptual specification", 
      "data-intensive domains", 
      "data-intensive research", 
      "domain objects", 
      "intensive domains", 
      "domain specifications", 
      "research infrastructure", 
      "formal representation", 
      "such specifications", 
      "big volume", 
      "research community", 
      "research domain", 
      "object properties", 
      "specification", 
      "respective domains", 
      "infrastructure", 
      "data analysis", 
      "domain", 
      "objects", 
      "usage", 
      "representation", 
      "experiments", 
      "method", 
      "tool", 
      "data", 
      "modeling", 
      "research", 
      "concept", 
      "research methods", 
      "scope", 
      "community", 
      "natural sciences", 
      "buildings", 
      "organization", 
      "definition", 
      "science", 
      "astronomy", 
      "manipulation", 
      "behavior", 
      "conceptualization", 
      "analysis", 
      "volume", 
      "properties", 
      "observations", 
      "hypothesis"
    ], 
    "name": "Conceptualization of Methods and Experiments in Data Intensive Research Domains", 
    "pagination": "3-17", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085038924"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-57135-5_1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-57135-5_1", 
      "https://app.dimensions.ai/details/publication/pub.1085038924"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_301.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-57135-5_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-57135-5_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-57135-5_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-57135-5_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-57135-5_1'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      23 PREDICATES      70 URIs      63 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-57135-5_1 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nf7aa6d2dce124084a7d50a610d220383
4 schema:datePublished 2017-04-23
5 schema:datePublishedReg 2017-04-23
6 schema:description Nowadays research of various scopes especially in natural sciences requires manipulation of big volumes of data generated by observation, experiments and modeling. Organization of data-intensive research assumes definition of domain specifications including concepts (specified by ontologies) and formal representation of data describing domain objects and their behavior (using conceptual schemes), shared and maintained by communities working in the respective domains. Research infrastructures are based on domain specifications and provide methods applied to such specifications, collected and developed by research communities. Tools for organizing experiments in research infrastructures are also supported by conceptual specifications of measuring and investigating object properties, applying the research methods, describing and testing the hypotheses. Astronomy as a sample data intensive domain is chosen to demonstrate building of conceptual specifications and usage of them for data analysis.
7 schema:editor Ne304ac804e4349c9a9eeb0465068fee2
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N61514adb1c784eb8806b11637867d6a5
12 schema:keywords analysis
13 astronomy
14 behavior
15 big volume
16 buildings
17 community
18 concept
19 conceptual specification
20 conceptualization
21 data
22 data analysis
23 data-intensive domains
24 data-intensive research
25 definition
26 domain
27 domain objects
28 domain specifications
29 experiments
30 formal representation
31 hypothesis
32 infrastructure
33 intensive domains
34 manipulation
35 method
36 modeling
37 natural sciences
38 object properties
39 objects
40 observations
41 organization
42 properties
43 representation
44 research
45 research community
46 research domain
47 research infrastructure
48 research methods
49 respective domains
50 science
51 scope
52 specification
53 such specifications
54 tool
55 usage
56 volume
57 schema:name Conceptualization of Methods and Experiments in Data Intensive Research Domains
58 schema:pagination 3-17
59 schema:productId N5132f0e7dc3f476c96d8e1752bb92289
60 Na1062cca0d2042728b54dd25a8209925
61 schema:publisher Nce67448541e54fe9b9e5eab9eee7c4f6
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085038924
63 https://doi.org/10.1007/978-3-319-57135-5_1
64 schema:sdDatePublished 2022-05-20T07:45
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N0741882fdecc47768e77ac029ad77317
67 schema:url https://doi.org/10.1007/978-3-319-57135-5_1
68 sgo:license sg:explorer/license/
69 sgo:sdDataset chapters
70 rdf:type schema:Chapter
71 N0741882fdecc47768e77ac029ad77317 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N11d8afda48f942df88992a55c1f93acc rdf:first sg:person.016144507043.63
74 rdf:rest Ne31d9713b8b14310b0c447c58e0c8e15
75 N5132f0e7dc3f476c96d8e1752bb92289 schema:name dimensions_id
76 schema:value pub.1085038924
77 rdf:type schema:PropertyValue
78 N61514adb1c784eb8806b11637867d6a5 schema:isbn 978-3-319-57134-8
79 978-3-319-57135-5
80 schema:name Data Analytics and Management in Data Intensive Domains
81 rdf:type schema:Book
82 N6b54d78765c84ace8e64159ab349c7b7 schema:familyName Kuznetsov
83 schema:givenName Sergei O.
84 rdf:type schema:Person
85 N9a237f7e3b1a4fd890f67143f4da0f85 rdf:first Nbe854e37183245289d45a8e8853c927f
86 rdf:rest rdf:nil
87 Na1062cca0d2042728b54dd25a8209925 schema:name doi
88 schema:value 10.1007/978-3-319-57135-5_1
89 rdf:type schema:PropertyValue
90 Na18cf3d4f4884e1a8b13347856a0ac45 schema:familyName Kalinichenko
91 schema:givenName Leonid
92 rdf:type schema:Person
93 Nbe854e37183245289d45a8e8853c927f schema:familyName Manolopoulos
94 schema:givenName Yannis
95 rdf:type schema:Person
96 Nce67448541e54fe9b9e5eab9eee7c4f6 schema:name Springer Nature
97 rdf:type schema:Organisation
98 Ne046109e2e6f4f13916020b6c5a74063 rdf:first N6b54d78765c84ace8e64159ab349c7b7
99 rdf:rest N9a237f7e3b1a4fd890f67143f4da0f85
100 Ne304ac804e4349c9a9eeb0465068fee2 rdf:first Na18cf3d4f4884e1a8b13347856a0ac45
101 rdf:rest Ne046109e2e6f4f13916020b6c5a74063
102 Ne31d9713b8b14310b0c447c58e0c8e15 rdf:first sg:person.016052705532.45
103 rdf:rest rdf:nil
104 Nf7aa6d2dce124084a7d50a610d220383 rdf:first sg:person.016472116440.50
105 rdf:rest N11d8afda48f942df88992a55c1f93acc
106 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
107 schema:name Information and Computing Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
110 schema:name Information Systems
111 rdf:type schema:DefinedTerm
112 sg:person.016052705532.45 schema:affiliation grid-institutes:grid.465279.b
113 schema:familyName Kovalev
114 schema:givenName Dmitry Yu
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016052705532.45
116 rdf:type schema:Person
117 sg:person.016144507043.63 schema:affiliation grid-institutes:grid.465279.b
118 schema:familyName Kalinichenko
119 schema:givenName Leonid A.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016144507043.63
121 rdf:type schema:Person
122 sg:person.016472116440.50 schema:affiliation grid-institutes:grid.465279.b
123 schema:familyName Skvortsov
124 schema:givenName Nikolay A.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016472116440.50
126 rdf:type schema:Person
127 grid-institutes:grid.465279.b schema:alternateName Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, Moscow, Russia
128 schema:name Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, Moscow, Russia
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...