Ontology type: schema:Chapter
2017-04-23
AUTHORSNikolay A. Skvortsov , Leonid A. Kalinichenko , Dmitry Yu Kovalev
ABSTRACTNowadays research of various scopes especially in natural sciences requires manipulation of big volumes of data generated by observation, experiments and modeling. Organization of data-intensive research assumes definition of domain specifications including concepts (specified by ontologies) and formal representation of data describing domain objects and their behavior (using conceptual schemes), shared and maintained by communities working in the respective domains. Research infrastructures are based on domain specifications and provide methods applied to such specifications, collected and developed by research communities. Tools for organizing experiments in research infrastructures are also supported by conceptual specifications of measuring and investigating object properties, applying the research methods, describing and testing the hypotheses. Astronomy as a sample data intensive domain is chosen to demonstrate building of conceptual specifications and usage of them for data analysis. More... »
PAGES3-17
Data Analytics and Management in Data Intensive Domains
ISBN
978-3-319-57134-8
978-3-319-57135-5
http://scigraph.springernature.com/pub.10.1007/978-3-319-57135-5_1
DOIhttp://dx.doi.org/10.1007/978-3-319-57135-5_1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1085038924
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information Systems",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Federal Research Center \u201cComputer Science and Control\u201d of Russian Academy of Sciences, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.465279.b",
"name": [
"Federal Research Center \u201cComputer Science and Control\u201d of Russian Academy of Sciences, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Skvortsov",
"givenName": "Nikolay A.",
"id": "sg:person.016472116440.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016472116440.50"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Federal Research Center \u201cComputer Science and Control\u201d of Russian Academy of Sciences, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.465279.b",
"name": [
"Federal Research Center \u201cComputer Science and Control\u201d of Russian Academy of Sciences, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Kalinichenko",
"givenName": "Leonid A.",
"id": "sg:person.016144507043.63",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016144507043.63"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Federal Research Center \u201cComputer Science and Control\u201d of Russian Academy of Sciences, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.465279.b",
"name": [
"Federal Research Center \u201cComputer Science and Control\u201d of Russian Academy of Sciences, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Kovalev",
"givenName": "Dmitry Yu",
"id": "sg:person.016052705532.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016052705532.45"
],
"type": "Person"
}
],
"datePublished": "2017-04-23",
"datePublishedReg": "2017-04-23",
"description": "Nowadays research of various scopes especially in natural sciences requires manipulation of big volumes of data generated by observation, experiments and modeling. Organization of data-intensive research assumes definition of domain specifications including concepts (specified by ontologies) and formal representation of data describing domain objects and their behavior (using conceptual schemes), shared and maintained by communities working in the respective domains. Research infrastructures are based on domain specifications and provide methods applied to such specifications, collected and developed by research communities. Tools for organizing experiments in research infrastructures are also supported by conceptual specifications of measuring and investigating object properties, applying the research methods, describing and testing the hypotheses. Astronomy as a sample data intensive domain is chosen to demonstrate building of conceptual specifications and usage of them for data analysis.",
"editor": [
{
"familyName": "Kalinichenko",
"givenName": "Leonid",
"type": "Person"
},
{
"familyName": "Kuznetsov",
"givenName": "Sergei O.",
"type": "Person"
},
{
"familyName": "Manolopoulos",
"givenName": "Yannis",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-57135-5_1",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-57134-8",
"978-3-319-57135-5"
],
"name": "Data Analytics and Management in Data Intensive Domains",
"type": "Book"
},
"keywords": [
"conceptual specification",
"data-intensive domains",
"data-intensive research",
"domain objects",
"intensive domains",
"domain specifications",
"research infrastructure",
"formal representation",
"such specifications",
"big volume",
"research community",
"research domain",
"object properties",
"specification",
"respective domains",
"infrastructure",
"data analysis",
"domain",
"objects",
"usage",
"representation",
"experiments",
"method",
"tool",
"data",
"modeling",
"research",
"concept",
"research methods",
"scope",
"community",
"natural sciences",
"buildings",
"organization",
"definition",
"science",
"astronomy",
"manipulation",
"behavior",
"conceptualization",
"analysis",
"volume",
"properties",
"observations",
"hypothesis"
],
"name": "Conceptualization of Methods and Experiments in Data Intensive Research Domains",
"pagination": "3-17",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1085038924"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-57135-5_1"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-57135-5_1",
"https://app.dimensions.ai/details/publication/pub.1085038924"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:45",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_301.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-57135-5_1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-57135-5_1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-57135-5_1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-57135-5_1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-57135-5_1'
This table displays all metadata directly associated to this object as RDF triples.
129 TRIPLES
23 PREDICATES
70 URIs
63 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-57135-5_1 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0806 |
3 | ″ | schema:author | Nf7aa6d2dce124084a7d50a610d220383 |
4 | ″ | schema:datePublished | 2017-04-23 |
5 | ″ | schema:datePublishedReg | 2017-04-23 |
6 | ″ | schema:description | Nowadays research of various scopes especially in natural sciences requires manipulation of big volumes of data generated by observation, experiments and modeling. Organization of data-intensive research assumes definition of domain specifications including concepts (specified by ontologies) and formal representation of data describing domain objects and their behavior (using conceptual schemes), shared and maintained by communities working in the respective domains. Research infrastructures are based on domain specifications and provide methods applied to such specifications, collected and developed by research communities. Tools for organizing experiments in research infrastructures are also supported by conceptual specifications of measuring and investigating object properties, applying the research methods, describing and testing the hypotheses. Astronomy as a sample data intensive domain is chosen to demonstrate building of conceptual specifications and usage of them for data analysis. |
7 | ″ | schema:editor | Ne304ac804e4349c9a9eeb0465068fee2 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N61514adb1c784eb8806b11637867d6a5 |
12 | ″ | schema:keywords | analysis |
13 | ″ | ″ | astronomy |
14 | ″ | ″ | behavior |
15 | ″ | ″ | big volume |
16 | ″ | ″ | buildings |
17 | ″ | ″ | community |
18 | ″ | ″ | concept |
19 | ″ | ″ | conceptual specification |
20 | ″ | ″ | conceptualization |
21 | ″ | ″ | data |
22 | ″ | ″ | data analysis |
23 | ″ | ″ | data-intensive domains |
24 | ″ | ″ | data-intensive research |
25 | ″ | ″ | definition |
26 | ″ | ″ | domain |
27 | ″ | ″ | domain objects |
28 | ″ | ″ | domain specifications |
29 | ″ | ″ | experiments |
30 | ″ | ″ | formal representation |
31 | ″ | ″ | hypothesis |
32 | ″ | ″ | infrastructure |
33 | ″ | ″ | intensive domains |
34 | ″ | ″ | manipulation |
35 | ″ | ″ | method |
36 | ″ | ″ | modeling |
37 | ″ | ″ | natural sciences |
38 | ″ | ″ | object properties |
39 | ″ | ″ | objects |
40 | ″ | ″ | observations |
41 | ″ | ″ | organization |
42 | ″ | ″ | properties |
43 | ″ | ″ | representation |
44 | ″ | ″ | research |
45 | ″ | ″ | research community |
46 | ″ | ″ | research domain |
47 | ″ | ″ | research infrastructure |
48 | ″ | ″ | research methods |
49 | ″ | ″ | respective domains |
50 | ″ | ″ | science |
51 | ″ | ″ | scope |
52 | ″ | ″ | specification |
53 | ″ | ″ | such specifications |
54 | ″ | ″ | tool |
55 | ″ | ″ | usage |
56 | ″ | ″ | volume |
57 | ″ | schema:name | Conceptualization of Methods and Experiments in Data Intensive Research Domains |
58 | ″ | schema:pagination | 3-17 |
59 | ″ | schema:productId | N5132f0e7dc3f476c96d8e1752bb92289 |
60 | ″ | ″ | Na1062cca0d2042728b54dd25a8209925 |
61 | ″ | schema:publisher | Nce67448541e54fe9b9e5eab9eee7c4f6 |
62 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1085038924 |
63 | ″ | ″ | https://doi.org/10.1007/978-3-319-57135-5_1 |
64 | ″ | schema:sdDatePublished | 2022-05-20T07:45 |
65 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
66 | ″ | schema:sdPublisher | N0741882fdecc47768e77ac029ad77317 |
67 | ″ | schema:url | https://doi.org/10.1007/978-3-319-57135-5_1 |
68 | ″ | sgo:license | sg:explorer/license/ |
69 | ″ | sgo:sdDataset | chapters |
70 | ″ | rdf:type | schema:Chapter |
71 | N0741882fdecc47768e77ac029ad77317 | schema:name | Springer Nature - SN SciGraph project |
72 | ″ | rdf:type | schema:Organization |
73 | N11d8afda48f942df88992a55c1f93acc | rdf:first | sg:person.016144507043.63 |
74 | ″ | rdf:rest | Ne31d9713b8b14310b0c447c58e0c8e15 |
75 | N5132f0e7dc3f476c96d8e1752bb92289 | schema:name | dimensions_id |
76 | ″ | schema:value | pub.1085038924 |
77 | ″ | rdf:type | schema:PropertyValue |
78 | N61514adb1c784eb8806b11637867d6a5 | schema:isbn | 978-3-319-57134-8 |
79 | ″ | ″ | 978-3-319-57135-5 |
80 | ″ | schema:name | Data Analytics and Management in Data Intensive Domains |
81 | ″ | rdf:type | schema:Book |
82 | N6b54d78765c84ace8e64159ab349c7b7 | schema:familyName | Kuznetsov |
83 | ″ | schema:givenName | Sergei O. |
84 | ″ | rdf:type | schema:Person |
85 | N9a237f7e3b1a4fd890f67143f4da0f85 | rdf:first | Nbe854e37183245289d45a8e8853c927f |
86 | ″ | rdf:rest | rdf:nil |
87 | Na1062cca0d2042728b54dd25a8209925 | schema:name | doi |
88 | ″ | schema:value | 10.1007/978-3-319-57135-5_1 |
89 | ″ | rdf:type | schema:PropertyValue |
90 | Na18cf3d4f4884e1a8b13347856a0ac45 | schema:familyName | Kalinichenko |
91 | ″ | schema:givenName | Leonid |
92 | ″ | rdf:type | schema:Person |
93 | Nbe854e37183245289d45a8e8853c927f | schema:familyName | Manolopoulos |
94 | ″ | schema:givenName | Yannis |
95 | ″ | rdf:type | schema:Person |
96 | Nce67448541e54fe9b9e5eab9eee7c4f6 | schema:name | Springer Nature |
97 | ″ | rdf:type | schema:Organisation |
98 | Ne046109e2e6f4f13916020b6c5a74063 | rdf:first | N6b54d78765c84ace8e64159ab349c7b7 |
99 | ″ | rdf:rest | N9a237f7e3b1a4fd890f67143f4da0f85 |
100 | Ne304ac804e4349c9a9eeb0465068fee2 | rdf:first | Na18cf3d4f4884e1a8b13347856a0ac45 |
101 | ″ | rdf:rest | Ne046109e2e6f4f13916020b6c5a74063 |
102 | Ne31d9713b8b14310b0c447c58e0c8e15 | rdf:first | sg:person.016052705532.45 |
103 | ″ | rdf:rest | rdf:nil |
104 | Nf7aa6d2dce124084a7d50a610d220383 | rdf:first | sg:person.016472116440.50 |
105 | ″ | rdf:rest | N11d8afda48f942df88992a55c1f93acc |
106 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
107 | ″ | schema:name | Information and Computing Sciences |
108 | ″ | rdf:type | schema:DefinedTerm |
109 | anzsrc-for:0806 | schema:inDefinedTermSet | anzsrc-for: |
110 | ″ | schema:name | Information Systems |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | sg:person.016052705532.45 | schema:affiliation | grid-institutes:grid.465279.b |
113 | ″ | schema:familyName | Kovalev |
114 | ″ | schema:givenName | Dmitry Yu |
115 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016052705532.45 |
116 | ″ | rdf:type | schema:Person |
117 | sg:person.016144507043.63 | schema:affiliation | grid-institutes:grid.465279.b |
118 | ″ | schema:familyName | Kalinichenko |
119 | ″ | schema:givenName | Leonid A. |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016144507043.63 |
121 | ″ | rdf:type | schema:Person |
122 | sg:person.016472116440.50 | schema:affiliation | grid-institutes:grid.465279.b |
123 | ″ | schema:familyName | Skvortsov |
124 | ″ | schema:givenName | Nikolay A. |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016472116440.50 |
126 | ″ | rdf:type | schema:Person |
127 | grid-institutes:grid.465279.b | schema:alternateName | Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, Moscow, Russia |
128 | ″ | schema:name | Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, Moscow, Russia |
129 | ″ | rdf:type | schema:Organization |