Ontology type: schema:Chapter
2017-05-24
AUTHORSPetter Fornes , Huynh D. V. Khoa
ABSTRACTReliable prediction of landslide triggering threshold and landslide run-out distance is essential for hazard risk assessment. The paper focuses on studying slides in sensitive clays, which represent a major geohazard in many countries including Norway, Sweden and eastern Canada. Large deformation finite element (FE) analyses were performed using the Coupled Eulerian-Lagrangian (CEL) method in Abaqus, which allows for capturing of the full progressive failure mechanism (initiation, propagation and breakoff) involved in a sensitive clay slide. The 1984 slide in Vestfossen, Norway, was chosen as problem case of progressive failure in sensitive clay to be back-calculated by using the CEL FE-model. It is found that the failure mechanism predicted by the FE-analysis agrees reasonably well with the historical failure mode observed at Vestfossen. A parametric study has been performed on the remoulded shear strength as well as the rate of strain softening of the sensitive clay in order to evaluate their effects on the landslide run-out distance. More... »
PAGES347-357
Landslides in Sensitive Clays
ISBN
978-3-319-56486-9
978-3-319-56487-6
http://scigraph.springernature.com/pub.10.1007/978-3-319-56487-6_31
DOIhttp://dx.doi.org/10.1007/978-3-319-56487-6_31
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1085573421
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Civil Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Norwegian University of Science and Technology (NTNU), Trondheim, Norway",
"id": "http://www.grid.ac/institutes/grid.5947.f",
"name": [
"Norwegian Geotechnical Institute (NGI), Oslo, Norway",
"Norwegian University of Science and Technology (NTNU), Trondheim, Norway"
],
"type": "Organization"
},
"familyName": "Fornes",
"givenName": "Petter",
"id": "sg:person.014550361565.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014550361565.49"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Norwegian Geotechnical Institute (NGI), Oslo, Norway",
"id": "http://www.grid.ac/institutes/grid.425894.6",
"name": [
"Norwegian Geotechnical Institute (NGI), Oslo, Norway"
],
"type": "Organization"
},
"familyName": "Khoa",
"givenName": "Huynh D. V.",
"id": "sg:person.012415507431.56",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012415507431.56"
],
"type": "Person"
}
],
"datePublished": "2017-05-24",
"datePublishedReg": "2017-05-24",
"description": "Reliable prediction of landslide triggering threshold and landslide run-out distance is essential for hazard risk assessment. The paper focuses on studying slides in sensitive clays, which represent a major geohazard in many countries including Norway, Sweden and eastern Canada. Large deformation finite element (FE) analyses were performed using the Coupled Eulerian-Lagrangian (CEL) method in Abaqus, which allows for capturing of the full progressive failure mechanism (initiation, propagation and breakoff) involved in a sensitive clay slide. The 1984 slide in Vestfossen, Norway, was chosen as problem case of progressive failure in sensitive clay to be back-calculated by using the CEL FE-model. It is found that the failure mechanism predicted by the FE-analysis agrees reasonably well with the historical failure mode observed at Vestfossen. A parametric study has been performed on the remoulded shear strength as well as the rate of strain softening of the sensitive clay in order to evaluate their effects on the landslide run-out distance.",
"editor": [
{
"familyName": "Thakur",
"givenName": "Vikas",
"type": "Person"
},
{
"familyName": "L'Heureux",
"givenName": "Jean-S\u00e9bastien",
"type": "Person"
},
{
"familyName": "Locat",
"givenName": "Ariane",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-56487-6_31",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-56486-9",
"978-3-319-56487-6"
],
"name": "Landslides in Sensitive Clays",
"type": "Book"
},
"keywords": [
"sensitive clays",
"failure mechanism",
"large deformation finite element analysis",
"finite element analysis",
"progressive failure mechanism",
"Eulerian-Lagrangian method",
"FE model",
"FE analysis",
"shear strength",
"strain softening",
"element analysis",
"failure modes",
"parametric study",
"sensitive clay landslides",
"effect of strain",
"progressive failure",
"major geohazard",
"clay landslides",
"hazard risk assessment",
"reliable prediction",
"clay",
"landslides",
"ABAQUS",
"softening",
"geohazards",
"strength",
"distance",
"mode",
"prediction",
"capturing",
"behavior",
"effect",
"method",
"slides",
"order",
"mechanism",
"run",
"risk assessment",
"failure",
"strains",
"rate",
"analysis",
"threshold",
"eastern Canada",
"problem cases",
"assessment",
"cases",
"study",
"Norway",
"Canada",
"Sweden",
"countries",
"paper"
],
"name": "Effect of Strain Softening Behaviours on Run-Out Distance of a Sensitive Clay Landslide",
"pagination": "347-357",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1085573421"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-56487-6_31"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-56487-6_31",
"https://app.dimensions.ai/details/publication/pub.1085573421"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:47",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_375.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-56487-6_31"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-56487-6_31'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-56487-6_31'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-56487-6_31'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-56487-6_31'
This table displays all metadata directly associated to this object as RDF triples.
134 TRIPLES
23 PREDICATES
78 URIs
71 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-56487-6_31 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0905 |
3 | ″ | schema:author | N6595ab737bfb44ad9c00afdd5f33fa3c |
4 | ″ | schema:datePublished | 2017-05-24 |
5 | ″ | schema:datePublishedReg | 2017-05-24 |
6 | ″ | schema:description | Reliable prediction of landslide triggering threshold and landslide run-out distance is essential for hazard risk assessment. The paper focuses on studying slides in sensitive clays, which represent a major geohazard in many countries including Norway, Sweden and eastern Canada. Large deformation finite element (FE) analyses were performed using the Coupled Eulerian-Lagrangian (CEL) method in Abaqus, which allows for capturing of the full progressive failure mechanism (initiation, propagation and breakoff) involved in a sensitive clay slide. The 1984 slide in Vestfossen, Norway, was chosen as problem case of progressive failure in sensitive clay to be back-calculated by using the CEL FE-model. It is found that the failure mechanism predicted by the FE-analysis agrees reasonably well with the historical failure mode observed at Vestfossen. A parametric study has been performed on the remoulded shear strength as well as the rate of strain softening of the sensitive clay in order to evaluate their effects on the landslide run-out distance. |
7 | ″ | schema:editor | Nc04e4b653d81463c90dc020689c0a712 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Ned639c0498484a65a366f9d0e07c26a6 |
12 | ″ | schema:keywords | ABAQUS |
13 | ″ | ″ | Canada |
14 | ″ | ″ | Eulerian-Lagrangian method |
15 | ″ | ″ | FE analysis |
16 | ″ | ″ | FE model |
17 | ″ | ″ | Norway |
18 | ″ | ″ | Sweden |
19 | ″ | ″ | analysis |
20 | ″ | ″ | assessment |
21 | ″ | ″ | behavior |
22 | ″ | ″ | capturing |
23 | ″ | ″ | cases |
24 | ″ | ″ | clay |
25 | ″ | ″ | clay landslides |
26 | ″ | ″ | countries |
27 | ″ | ″ | distance |
28 | ″ | ″ | eastern Canada |
29 | ″ | ″ | effect |
30 | ″ | ″ | effect of strain |
31 | ″ | ″ | element analysis |
32 | ″ | ″ | failure |
33 | ″ | ″ | failure mechanism |
34 | ″ | ″ | failure modes |
35 | ″ | ″ | finite element analysis |
36 | ″ | ″ | geohazards |
37 | ″ | ″ | hazard risk assessment |
38 | ″ | ″ | landslides |
39 | ″ | ″ | large deformation finite element analysis |
40 | ″ | ″ | major geohazard |
41 | ″ | ″ | mechanism |
42 | ″ | ″ | method |
43 | ″ | ″ | mode |
44 | ″ | ″ | order |
45 | ″ | ″ | paper |
46 | ″ | ″ | parametric study |
47 | ″ | ″ | prediction |
48 | ″ | ″ | problem cases |
49 | ″ | ″ | progressive failure |
50 | ″ | ″ | progressive failure mechanism |
51 | ″ | ″ | rate |
52 | ″ | ″ | reliable prediction |
53 | ″ | ″ | risk assessment |
54 | ″ | ″ | run |
55 | ″ | ″ | sensitive clay landslides |
56 | ″ | ″ | sensitive clays |
57 | ″ | ″ | shear strength |
58 | ″ | ″ | slides |
59 | ″ | ″ | softening |
60 | ″ | ″ | strain softening |
61 | ″ | ″ | strains |
62 | ″ | ″ | strength |
63 | ″ | ″ | study |
64 | ″ | ″ | threshold |
65 | ″ | schema:name | Effect of Strain Softening Behaviours on Run-Out Distance of a Sensitive Clay Landslide |
66 | ″ | schema:pagination | 347-357 |
67 | ″ | schema:productId | N701bd2a519664c7e857edc8d4cb919a9 |
68 | ″ | ″ | N79df0c357d1049209d67aac0fce39d69 |
69 | ″ | schema:publisher | Nce4c7e96bc9446adb02afb9a57aa52d7 |
70 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1085573421 |
71 | ″ | ″ | https://doi.org/10.1007/978-3-319-56487-6_31 |
72 | ″ | schema:sdDatePublished | 2022-05-20T07:47 |
73 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
74 | ″ | schema:sdPublisher | N0b4ff5fe81424d029a27cc91f5f5f79f |
75 | ″ | schema:url | https://doi.org/10.1007/978-3-319-56487-6_31 |
76 | ″ | sgo:license | sg:explorer/license/ |
77 | ″ | sgo:sdDataset | chapters |
78 | ″ | rdf:type | schema:Chapter |
79 | N0b4ff5fe81424d029a27cc91f5f5f79f | schema:name | Springer Nature - SN SciGraph project |
80 | ″ | rdf:type | schema:Organization |
81 | N10c45c342b704807a88ccf4748770015 | rdf:first | N64575b63ff20434f86ca3eb1cfcb52e5 |
82 | ″ | rdf:rest | N66cbcb33c57142c6bee5b03c516bd16f |
83 | N1617b17ff7274efbae609b0591c6150d | rdf:first | sg:person.012415507431.56 |
84 | ″ | rdf:rest | rdf:nil |
85 | N250bbc2eb4b24807acc05a5e98d91f92 | schema:familyName | Locat |
86 | ″ | schema:givenName | Ariane |
87 | ″ | rdf:type | schema:Person |
88 | N64575b63ff20434f86ca3eb1cfcb52e5 | schema:familyName | L'Heureux |
89 | ″ | schema:givenName | Jean-Sébastien |
90 | ″ | rdf:type | schema:Person |
91 | N6595ab737bfb44ad9c00afdd5f33fa3c | rdf:first | sg:person.014550361565.49 |
92 | ″ | rdf:rest | N1617b17ff7274efbae609b0591c6150d |
93 | N66cbcb33c57142c6bee5b03c516bd16f | rdf:first | N250bbc2eb4b24807acc05a5e98d91f92 |
94 | ″ | rdf:rest | rdf:nil |
95 | N701bd2a519664c7e857edc8d4cb919a9 | schema:name | doi |
96 | ″ | schema:value | 10.1007/978-3-319-56487-6_31 |
97 | ″ | rdf:type | schema:PropertyValue |
98 | N79df0c357d1049209d67aac0fce39d69 | schema:name | dimensions_id |
99 | ″ | schema:value | pub.1085573421 |
100 | ″ | rdf:type | schema:PropertyValue |
101 | Nc04e4b653d81463c90dc020689c0a712 | rdf:first | Nd17570c738b74d22a94bf23e704bcff9 |
102 | ″ | rdf:rest | N10c45c342b704807a88ccf4748770015 |
103 | Nce4c7e96bc9446adb02afb9a57aa52d7 | schema:name | Springer Nature |
104 | ″ | rdf:type | schema:Organisation |
105 | Nd17570c738b74d22a94bf23e704bcff9 | schema:familyName | Thakur |
106 | ″ | schema:givenName | Vikas |
107 | ″ | rdf:type | schema:Person |
108 | Ned639c0498484a65a366f9d0e07c26a6 | schema:isbn | 978-3-319-56486-9 |
109 | ″ | ″ | 978-3-319-56487-6 |
110 | ″ | schema:name | Landslides in Sensitive Clays |
111 | ″ | rdf:type | schema:Book |
112 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Engineering |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | anzsrc-for:0905 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Civil Engineering |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | sg:person.012415507431.56 | schema:affiliation | grid-institutes:grid.425894.6 |
119 | ″ | schema:familyName | Khoa |
120 | ″ | schema:givenName | Huynh D. V. |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012415507431.56 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.014550361565.49 | schema:affiliation | grid-institutes:grid.5947.f |
124 | ″ | schema:familyName | Fornes |
125 | ″ | schema:givenName | Petter |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014550361565.49 |
127 | ″ | rdf:type | schema:Person |
128 | grid-institutes:grid.425894.6 | schema:alternateName | Norwegian Geotechnical Institute (NGI), Oslo, Norway |
129 | ″ | schema:name | Norwegian Geotechnical Institute (NGI), Oslo, Norway |
130 | ″ | rdf:type | schema:Organization |
131 | grid-institutes:grid.5947.f | schema:alternateName | Norwegian University of Science and Technology (NTNU), Trondheim, Norway |
132 | ″ | schema:name | Norwegian Geotechnical Institute (NGI), Oslo, Norway |
133 | ″ | ″ | Norwegian University of Science and Technology (NTNU), Trondheim, Norway |
134 | ″ | rdf:type | schema:Organization |