The Effect of the Fermi Velocity on the Conductivity of the Graphene-Superconductive Graphene Junction View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

A. M. Korol , S. I. Litvynchuk , N. V. Medvid , V. M. Isai

ABSTRACT

We consider the nanoscale structure, the superconducting graphene in contact with the normal graphene, and two options are considered – cases of the gapped and the gapless graphene. It is believed that the Fermi velocity value in the superconducting graphene may differ from that in the pristine graphene (Concha A, Tesanovic Z. Phys Rev B 82:033413–033421, 2010). With the help the Blonder-Tinkham-Klapwijk formalism (Blonder GE, Tinkham M, Klapwijk TM. Phys Rev B 25:4515, 1982), the conductance is calculated taking into account the fact that the external potential U is applied to the superconducting part of the given structure. The coefficients of both the normal and the Andreev reflection are evaluated within the framework of the Dirac-Bogoliubov-de Gennes equations. It is shown that the determining factor in the formation of the conductance is the process of the Andreev spectacular reflection. A characteristic feature of the G(E) dependence, E – the quasiparticle energy, is the presence of a peak at the point E = ∆S, ∆S being the superconducting energy gap in graphene. The value of the maximum (peak) value of G(E), as well as the G(E) curve steepness essentially, depends on the value of the Fermi velocity vF. The dependence of the conductance on the potential U is analyzed. In particular, we show that if a normal part of the contact is represented by the gapped graphene, the increase in U leads to a decrease in G(E) for the cases of z = 1, z < 1, z = vF/v0,v0 being the Fermi velocity in the pristine graphene, and instead there is a growth of G(E) for the case of z > 1. The obtained results can be useful for applications in the graphene-based electronics. More... »

PAGES

383-393

References to SciGraph publications

  • 2007-03. The rise of graphene in NATURE MATERIALS
  • 2015. Transport Properties of the Dirac-Weyl Electrons Through the Graphene-Based Superlattice Modulated by the Fermi Velocity Barriers in NANOPLASMONICS, NANO-OPTICS, NANOCOMPOSITES, AND SURFACE STUDIES
  • Book

    TITLE

    Nanophysics, Nanomaterials, Interface Studies, and Applications

    ISBN

    978-3-319-56244-5
    978-3-319-56422-7

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-56422-7_28

    DOI

    http://dx.doi.org/10.1007/978-3-319-56422-7_28

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091476428


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Condensed Matter Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National University of Food Technologies", 
              "id": "https://www.grid.ac/institutes/grid.445752.5", 
              "name": [
                "ISIR", 
                "National University of Food Technologies"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Korol", 
            "givenName": "A. M.", 
            "id": "sg:person.014306341731.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014306341731.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Food Technologies", 
              "id": "https://www.grid.ac/institutes/grid.445752.5", 
              "name": [
                "National University of Food Technologies"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Litvynchuk", 
            "givenName": "S. I.", 
            "id": "sg:person.012164133531.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012164133531.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Food Technologies", 
              "id": "https://www.grid.ac/institutes/grid.445752.5", 
              "name": [
                "National University of Food Technologies"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Medvid", 
            "givenName": "N. V.", 
            "id": "sg:person.07666124423.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07666124423.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Food Technologies", 
              "id": "https://www.grid.ac/institutes/grid.445752.5", 
              "name": [
                "National University of Food Technologies"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Isai", 
            "givenName": "V. M.", 
            "id": "sg:person.013403273623.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013403273623.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.physc.2010.08.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003485690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.81.073407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008509070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.81.073407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008509070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physe.2013.05.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012502212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.217001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018749721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.217001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018749721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-18543-9_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021780678", 
              "https://doi.org/10.1007/978-3-319-18543-9_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/23/13/135302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026535002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.033413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026567711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.033413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026567711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physb.2011.08.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032852846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physleta.2012.08.047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041902067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.81.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050408744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.81.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050408744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052791836", 
              "https://doi.org/10.1038/nmat1849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0256-307x/30/4/047201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059060203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.25.4515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060530522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.25.4515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060530522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.9734/psij/2016/23236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074142482"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017", 
        "datePublishedReg": "2017-01-01", 
        "description": "We consider the nanoscale structure, the superconducting graphene in contact with the normal graphene, and two options are considered \u2013 cases of the gapped and the gapless graphene. It is believed that the Fermi velocity value in the superconducting graphene may differ from that in the pristine graphene (Concha A, Tesanovic Z. Phys Rev B 82:033413\u2013033421, 2010). With the help the Blonder-Tinkham-Klapwijk formalism (Blonder GE, Tinkham M, Klapwijk TM. Phys Rev B 25:4515, 1982), the conductance is calculated taking into account the fact that the external potential U is applied to the superconducting part of the given structure. The coefficients of both the normal and the Andreev reflection are evaluated within the framework of the Dirac-Bogoliubov-de Gennes equations. It is shown that the determining factor in the formation of the conductance is the process of the Andreev spectacular reflection. A characteristic feature of the G(E) dependence, E \u2013 the quasiparticle energy, is the presence of a peak at the point E = \u2206S, \u2206S being the superconducting energy gap in graphene. The value of the maximum (peak) value of G(E), as well as the G(E) curve steepness essentially, depends on the value of the Fermi velocity vF. The dependence of the conductance on the potential U is analyzed. In particular, we show that if a normal part of the contact is represented by the gapped graphene, the increase in U leads to a decrease in G(E) for the cases of z = 1, z < 1, z = vF/v0,v0 being the Fermi velocity in the pristine graphene, and instead there is a growth of G(E) for the case of z > 1. The obtained results can be useful for applications in the graphene-based electronics.", 
        "editor": [
          {
            "familyName": "Fesenko", 
            "givenName": "Olena", 
            "type": "Person"
          }, 
          {
            "familyName": "Yatsenko", 
            "givenName": "Leonid", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-56422-7_28", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-56244-5", 
            "978-3-319-56422-7"
          ], 
          "name": "Nanophysics, Nanomaterials, Interface Studies, and Applications", 
          "type": "Book"
        }, 
        "name": "The Effect of the Fermi Velocity on the Conductivity of the Graphene-Superconductive Graphene Junction", 
        "pagination": "383-393", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-56422-7_28"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "897e9d0ba4d00ec73cfbd794d119336d289154df2ae0e743ceb2d49c55f0bdb2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091476428"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-56422-7_28", 
          "https://app.dimensions.ai/details/publication/pub.1091476428"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T16:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000280.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-56422-7_28"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-56422-7_28'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-56422-7_28'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-56422-7_28'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-56422-7_28'


     

    This table displays all metadata directly associated to this object as RDF triples.

    136 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-56422-7_28 schema:about anzsrc-for:02
    2 anzsrc-for:0204
    3 schema:author Nbfffcb6d1b504724af83f32907386a47
    4 schema:citation sg:pub.10.1007/978-3-319-18543-9_13
    5 sg:pub.10.1038/nmat1849
    6 https://doi.org/10.1016/j.physb.2011.08.010
    7 https://doi.org/10.1016/j.physc.2010.08.010
    8 https://doi.org/10.1016/j.physe.2013.05.010
    9 https://doi.org/10.1016/j.physleta.2012.08.047
    10 https://doi.org/10.1088/0256-307x/30/4/047201
    11 https://doi.org/10.1088/0953-8984/23/13/135302
    12 https://doi.org/10.1103/physrevb.25.4515
    13 https://doi.org/10.1103/physrevb.81.073407
    14 https://doi.org/10.1103/physrevb.82.033413
    15 https://doi.org/10.1103/physrevlett.97.217001
    16 https://doi.org/10.1103/revmodphys.81.109
    17 https://doi.org/10.9734/psij/2016/23236
    18 schema:datePublished 2017
    19 schema:datePublishedReg 2017-01-01
    20 schema:description We consider the nanoscale structure, the superconducting graphene in contact with the normal graphene, and two options are considered – cases of the gapped and the gapless graphene. It is believed that the Fermi velocity value in the superconducting graphene may differ from that in the pristine graphene (Concha A, Tesanovic Z. Phys Rev B 82:033413–033421, 2010). With the help the Blonder-Tinkham-Klapwijk formalism (Blonder GE, Tinkham M, Klapwijk TM. Phys Rev B 25:4515, 1982), the conductance is calculated taking into account the fact that the external potential U is applied to the superconducting part of the given structure. The coefficients of both the normal and the Andreev reflection are evaluated within the framework of the Dirac-Bogoliubov-de Gennes equations. It is shown that the determining factor in the formation of the conductance is the process of the Andreev spectacular reflection. A characteristic feature of the G(E) dependence, E – the quasiparticle energy, is the presence of a peak at the point E = ∆S, ∆S being the superconducting energy gap in graphene. The value of the maximum (peak) value of G(E), as well as the G(E) curve steepness essentially, depends on the value of the Fermi velocity vF. The dependence of the conductance on the potential U is analyzed. In particular, we show that if a normal part of the contact is represented by the gapped graphene, the increase in U leads to a decrease in G(E) for the cases of z = 1, z < 1, z = vF/v0,v0 being the Fermi velocity in the pristine graphene, and instead there is a growth of G(E) for the case of z > 1. The obtained results can be useful for applications in the graphene-based electronics.
    21 schema:editor N67de16a6c1934e88a9571da8f8b13269
    22 schema:genre chapter
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N610199fd86344f2b82f8b034fa5d4dd1
    26 schema:name The Effect of the Fermi Velocity on the Conductivity of the Graphene-Superconductive Graphene Junction
    27 schema:pagination 383-393
    28 schema:productId N56142eec6fd84b94ab231058db4a7517
    29 Nc1ba52adba594d829d4ac09feae1d1d6
    30 Ne353646ba81c4462bbf444487886dfcd
    31 schema:publisher N4ed5db96c3fa4ef58c79d4aec5db766d
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091476428
    33 https://doi.org/10.1007/978-3-319-56422-7_28
    34 schema:sdDatePublished 2019-04-15T16:20
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N3f261179e00d42948675f9811aac2423
    37 schema:url http://link.springer.com/10.1007/978-3-319-56422-7_28
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset chapters
    40 rdf:type schema:Chapter
    41 N2705a855430043a88bf0007df9a904dc schema:familyName Yatsenko
    42 schema:givenName Leonid
    43 rdf:type schema:Person
    44 N2c7227e21c92450ba7578dced4ea2520 rdf:first sg:person.07666124423.79
    45 rdf:rest N8f571600512747bc8787a08074b65e46
    46 N3f261179e00d42948675f9811aac2423 schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 N4ed5db96c3fa4ef58c79d4aec5db766d schema:location Cham
    49 schema:name Springer International Publishing
    50 rdf:type schema:Organisation
    51 N56142eec6fd84b94ab231058db4a7517 schema:name readcube_id
    52 schema:value 897e9d0ba4d00ec73cfbd794d119336d289154df2ae0e743ceb2d49c55f0bdb2
    53 rdf:type schema:PropertyValue
    54 N5ac26bc497d84ef0962a9f6ca84e02f5 rdf:first N2705a855430043a88bf0007df9a904dc
    55 rdf:rest rdf:nil
    56 N610199fd86344f2b82f8b034fa5d4dd1 schema:isbn 978-3-319-56244-5
    57 978-3-319-56422-7
    58 schema:name Nanophysics, Nanomaterials, Interface Studies, and Applications
    59 rdf:type schema:Book
    60 N67de16a6c1934e88a9571da8f8b13269 rdf:first Nd489d153598742e29fcdeb6567a781b5
    61 rdf:rest N5ac26bc497d84ef0962a9f6ca84e02f5
    62 N8f571600512747bc8787a08074b65e46 rdf:first sg:person.013403273623.88
    63 rdf:rest rdf:nil
    64 Nbfffcb6d1b504724af83f32907386a47 rdf:first sg:person.014306341731.09
    65 rdf:rest Ne82ce80e6b9b4cafaa7ec63d27d70fae
    66 Nc1ba52adba594d829d4ac09feae1d1d6 schema:name dimensions_id
    67 schema:value pub.1091476428
    68 rdf:type schema:PropertyValue
    69 Nd489d153598742e29fcdeb6567a781b5 schema:familyName Fesenko
    70 schema:givenName Olena
    71 rdf:type schema:Person
    72 Ne353646ba81c4462bbf444487886dfcd schema:name doi
    73 schema:value 10.1007/978-3-319-56422-7_28
    74 rdf:type schema:PropertyValue
    75 Ne82ce80e6b9b4cafaa7ec63d27d70fae rdf:first sg:person.012164133531.40
    76 rdf:rest N2c7227e21c92450ba7578dced4ea2520
    77 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Physical Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Condensed Matter Physics
    82 rdf:type schema:DefinedTerm
    83 sg:person.012164133531.40 schema:affiliation https://www.grid.ac/institutes/grid.445752.5
    84 schema:familyName Litvynchuk
    85 schema:givenName S. I.
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012164133531.40
    87 rdf:type schema:Person
    88 sg:person.013403273623.88 schema:affiliation https://www.grid.ac/institutes/grid.445752.5
    89 schema:familyName Isai
    90 schema:givenName V. M.
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013403273623.88
    92 rdf:type schema:Person
    93 sg:person.014306341731.09 schema:affiliation https://www.grid.ac/institutes/grid.445752.5
    94 schema:familyName Korol
    95 schema:givenName A. M.
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014306341731.09
    97 rdf:type schema:Person
    98 sg:person.07666124423.79 schema:affiliation https://www.grid.ac/institutes/grid.445752.5
    99 schema:familyName Medvid
    100 schema:givenName N. V.
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07666124423.79
    102 rdf:type schema:Person
    103 sg:pub.10.1007/978-3-319-18543-9_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021780678
    104 https://doi.org/10.1007/978-3-319-18543-9_13
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
    107 https://doi.org/10.1038/nmat1849
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/j.physb.2011.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032852846
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/j.physc.2010.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003485690
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/j.physe.2013.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012502212
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.physleta.2012.08.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041902067
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1088/0256-307x/30/4/047201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059060203
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1088/0953-8984/23/13/135302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026535002
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1103/physrevb.25.4515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060530522
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1103/physrevb.81.073407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008509070
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1103/physrevb.82.033413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026567711
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1103/physrevlett.97.217001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018749721
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1103/revmodphys.81.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050408744
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.9734/psij/2016/23236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074142482
    132 rdf:type schema:CreativeWork
    133 https://www.grid.ac/institutes/grid.445752.5 schema:alternateName National University of Food Technologies
    134 schema:name ISIR
    135 National University of Food Technologies
    136 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...